Conferencias Plenarias



Graham Goodwin
Francesco Bullo
Frank Allgöwer
Joaquín Álvarez Gallegos
Perry Y. Li
Gerardo Espinosa Pérez


Experience Gained with Model Predictive Control in Applications: Industrial Electronics and Medicine

Graham Goodwin
Miércoles 15 de octubre, 2014
08:30 -- 09:30
Krystal 2, MiP-1.1

Resumen: This talk will overview experience gained from applying Model Predictive Control to several real world problems including Industrial Electronics and Medicine. Two particular problems will be examined in detail, namely, harmonic suppression with nonlinear delay compensation for inverters and control issues associated with the development of an artificial pancreas for type 1 diabetes. These applications lead to interesting research questions such as the impact of nonlinear behaviour and the use of feedforward in model predictive control.

Semblanza: Graham Goodwin obtained a B.Sc (Physics) 1965, B.E (Electrical Engineering) 1967, and Ph.D, 1971, from the University of New South Wales. He is currently Professor Laureate of Electrical Engineering at the University of Newcastle, Australia and is Director of The University of Newcastle Priority Research Centre for Complex Dynamic Systems and Control. He holds Honorary Doctorates from Lund Institute of Technology, Sweden and the Technion Israel. He is the co-author of eight books, four edited books, 218 international journal papers and 330 refereed international conference papers. He has presented 60 Keynote Addresses at major international conferences. Professor Goodwin is the recipient of Control Systems Society 1999 Hendrik Bode Lecture Prize, a Best Paper award by IEEE Transactions on Automatic Control, a Best Paper award by Asian Journal of Control, and 2 Best Engineering Text Book awards from the International Federation of Automatic Control in 1984 and 2005. In 2008 he received the Giorgio Quazza Medal from the International Federation of Automatic Control, in 2010 he received the IEEE Control Systems Award and the Nordic Process Control Award. In 2011 he received the Asian Control Association Wook Hyun Kwon Education Award, and in 2013 he received the Rufus Oldenburger Medal from the American Society of Mechanical Engineers. He is a Fellow of IEEE; an Honorary Fellow of Institute of Engineers, Australia; a Fellow of the International Federation of Automatic Control, a Fellow of the Australian Academy of Science; a Fellow of the Australian Academy of Technology, Science and Engineering; a Member of the International Statistical Institute; a Fellow of the Royal Society, London and a Foreign Member of the Royal Swedish Academy of Sciences. Professor Goodwin is a Distinguished Professor at Harbin Institute of Technology (China), Northwestern University (China), Zhengzhou University (China) and Universidad Técnica Federico Santa María (Chile). He has successfully supervised 38 Ph.D. students, all of them hold senior positions in major international universities and industry. He holds several research grants covering diverse areas including Power Electronics, 3G and 4G Mobile Communications, Ambulance Scheduling, and Artificial Pancreas development. He holds 16 International Patents covering rolling mill technology, telecommunications, mine planning and mineral exploration.



Synchronization in Oscillator Networks and Smart Grids

Francesco Bullo
Miércoles 15 de octubre, 2014
12:00 -- 13:00
Krystal 2, MiP-2.1

Resumen: The emergence of synchronization in complex networks of coupled oscillators is a pervasive topic in numerous scientific disciplines including biology, physics, chemistry, and engineering. A coupled-oscillator network is characterized by a population of heterogeneous oscillators and a graph describing the interaction among the oscillators. These two ingredients give rise to rich dynamic behaviors that have fascinated the scientific community for decades. In this talk I will present joint work with Florian D\"orfler on novel algebraic conditions for synchronization. The results exploit elegant connections among the theory of coupled oscillators, the graph-theoretical properties of electric circuits, and multiagent dynamical systems. Our results are relevant in the context of future smart grids subject to renewable stochastic power sources: assessing the existence, stability, optimality, and robustness of synchronous states is a pervasive topic in the study and operation of power networks.

Semblanza: Francesco Bullo received the Laurea Degree ”Summa Cum Laude” in Electrical Engineering from the University of Padova, Italy, in 1994, and the Ph.D. degree in Control and Dynamical Systems from the California Institute of Technology in 1999. From 1998 to 2004, he was an Assistant Professor with the Coordinated Science Laboratory at the University of Illinois at Urbana-Champaign. Currently he is Professor with the Mechanical Engineering Department at the University of California, Santa Barbara.

His students’ papers were finalists for the Best Student Paper Award at the IEEE Conference on Decision and Control (2002, 2005, 2007), and the American Control Conference (2005, 2006, 2010). He is an IEEE Fellow and has served or is serving on the Editorial Boards of the ”IEEE Transactions on Automatic Control,” the ”ESAIM: Control, Optimization, and the Calculus of Variations” and the ”SIAM Journal of Control and Optimization”. He has published more than 200 papers in international journals, books and refereed conferences. He is the coauthor, with Andrew D. Lewis, of the book ”Geometric Control of Mechanical Systems” (Springer, 2004) and, with Jorge Cortés and Sonia Martinez, of the book ”Distributed Control of Robotic Networks” (Princeton, 2009). His main research interest is multi-agent networks with application to robotic coordination, distributed computing and power networks. Other interests include vehicle routing, geometric control, and motion planning problems.



Industry 4.0: Challenges and Opportunities for Optimization-Based Control

Frank Allgöwer
Jueves 16 de octubre, 2014
08:30 -- 09:30
Krystal 2, JuP-1.1

Resumen: With the vision of the Smart Factory of the future, the manufacturing industries are currently undergoing a fundamental new orientation on the basis of the Cyber-Physical Systems and Internet of Things and Services paradigms. All parts along the manufacturing chain are nowadays equipped with embedded computing, communication and networking capabilities and are expected to interact in an optimal way towards the goal of an energy and resource efficient, save and reliable production process. Through decentralized optimal decision-making and an appropriate communication among the networked individual parts, the whole production process of the future is expected to operate optimally.

In this presentation an introduction to the goals and principles of Industry 4.0 is given and its challenges and opportunities for the field of automatic control are discussed. We will in particular investigate the potential impact of the field of optimization-based control for the fourth industrial revolution and will present two promising approaches, namely economic model predictive control and distributed, cooperative optimization and control.

Economic model predictive control (MPC) is a control technique which is based on the repeated online solution of an optimal control problem. Contrary to classical MPC, the employed cost function can be some general performance measure, possibly connected to the economics of the considered process. This allows to also consider control objectives different from the classical ones of stabilization or tracking, which makes economic MPC well suited as a tool to achieve the goals of Industry 4.0. In this talk, we examine conditions to classify the optimal operational regime for a system, and propose economic MPC schemes which allow for closed-loop average performance guarantees and satisfaction of (standard pointwise-in-time as well as averaged) constraints.

For the visions of Industry 4.0 to become reality, tools and methods are required to handle control and decision problems in a distributed and networked fashion. Relating to ideas such as the Internet of Things, distributed optimization algorithms, that work within asynchronous communication networks, are becoming more and more relevant. We present in this talk a broad framework for distributed optimization, in asynchronous peer-to-peer networks. Our framework is based on polyhedral approximations, and lends itself into a variety of distributed algorithms for solving specific decision problem, that are relevant in the context of Industry 4.0. We show how from the general framework algorithms can be derived to solve, e.g., assignment problems or robust optimization problems. Furthermore, we show that the general optimization framework leads naturally to a distributed model predictive control scheme, that is based on the exchange of predicted systems trajectories.

Semblanza: Frank Allgöwer studied Engineering Cybernetics and Applied Mathematics at the University of Stuttgart and the University of California at Los Angeles respectively. He received his Ph.D. degree in Chemical Engineering from the University of Stuttgart. He held a professorship in the electrical engineering department at ETH Zurich. He also held visiting positions at the California Institute of Technology, the NASA Ames Research Center, the DuPont Company and the University of California at Santa Barbara. Currently is Director of the Institute for Systems Theory and Automatic Control and professor in the Mechanical Engineering Department at the University of Stuttgart in Germany. Since 2012 Professor Allgöwer serves a Vice-President of the German Research Foundation (DFG). received several recognitions for his work including the IFAC Outstanding Service Award, the State Teaching Award of the state of Baden-Württemberg, the Leibniz Prize of the Deutsche Forschungsgemeinschaft and several best paper awards. At present Frank serves as IEEE CSS Vice-President for Technical Activities and is President-elect of the International Federation of Automatic Control. He is Editor for the journal Automatica and for the Springer Lecture Notes in Control and Information Science book series and serves as Associate Editor or on the editorial board of several further journals. Frank has been organizer or co-organizer of more than a dozen international conferences and has published over 200 scientific articles. Main interests in research and teaching are in the area of systems and control with emphasis on the development of new methods for optimization-based control, networks of systems and systems biology.



Sincronización De Sistemas Dinámicos

Joaquín Álvarez Gallegos
Jueves 16 de octubre, 2014
12:00 -- 13:00
Krystal 2, JuP-2.1

Resumen: De manera general, sincronizar se refiere a la coincidencia en tiempo de dos o más eventos. La sincronización es un fenómeno ubicuo en la naturaleza, necesario para mantener un equilibrio vital, desde organismos vivientes hasta sistemas celestes. En sistemas de ingeniería colaborativos, donde usualmente la sincronización no es un comportamiento natural, ésta debe ser forzada para hacerlos operar adecuadamente, convirtiéndose en el llamado problema de sincronización controlada, que puede resolverse utilizando técnicas de control automático. Este problema tiene una amplia variedad de aplicaciones, por ejemplo en comunicaciones privadas, sistemas multi-robot, teleoperación maestro/esclavo, redes eléctricas, sistemas de transporte, etc.

En esta plática se presentarán algunas técnicas para producir un comportamiento sincronizado en una clase de sistemas dinámicos. Se describirán algunos resultados formales, ilustrados mediante experimentos que muestran la utilidad práctica de los resultados teóricos. Se discutirá especialmente el desempeño en escenarios no ideales, como sistemas diferentes o la existencia de incertidumbres paramétricas o perturbaciones externas. Esto se ilustrará mediante experimentos realizados con circuitos electrónicos y mecanismos interactuando de diversas formas, incluyendo desde el clásico péndulo hasta sistemas rectilíneos y rotacionales, operando tanto en régimen regular como caótico.

Semblanza: Joaquín Álvarez Gallegos es Ingeniero en Electrónica y Telecomunicaciones por la Escuela Superior de Ingeniería Mecánica y Eléctrica (ESIME) del Instituto Politécnico Nacional (IPN, México) (1975), Maestro en Ciencias en Ingeniería Eléctrica del Centro de Investigación y de Estudios Avanzados (CINVESTAV) del IPN y Doctor en Ingeniería del Institut National Polytechnique de Grenoble (INPG, Francia, 1979). Ha sido investigador en el CINVESTAV (1980-87) en el Instituto de Investigaciones Eléctricas (IIE), de 1986 a 1990, y profesor en la ESIME-IPN (1975-87) y en el Centro Nacional de Investigación y Desarrollo Tecnológico (CENIDET), de 1989 a 1990. Actualmente es Investigador Titular del Departamento de Electrónica y Telecomunicaciones del Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California, México, desde 1990. Pertenece al Sistema Nacional de Investigadores (nivel III) y es miembro regular de la Academia Mexicana de Ciencias, de la IEEE y de la Asociación de México de Control Automático, de la cual fue presidente de 1984 a 1986. Ha publicado más de 180 artículos en revistas y congresos, así como varios libros y capítulos de libros. Ha dirigido diversos proyectos de investigación y desarrollo tecnológico, así como las tesis de 10 estudiantes de doctorado, 37 de maestría y 7 de licenciatura. Sus contribuciones principales han sido en el diseño de simuladores en tiempo real de procesos, sistemas de control robusto, estabilidad de sistemas discretos, control y sincronización de sistemas caóticos, bifurcaciones y dinámica caótica de sistemas de control, caos en sistemas mecánicos, estabilidad de sistemas discontinuos, sincronización de arreglos y aplicaciones a procesos de fermentación y de destilación, plantas termoeléctricas, sistemas mecánicos y circuitos electrónicos. Sus áreas de investigación han sido automatización y control, control de sistemas no lineales y su aplicación a procesos de destilación y de plantas eléctricas. Sus líneas actuales de investigación son el control y sincronización de sistemas continuos y discretos, control de bifurcaciones, control de sistemas no diferenciables y su aplicación a sistemas caóticos, a sistemas mecánicos y a circuitos electrónicos.



Control for a Novel Compressed Air Energy Storage System for Wind Turbines

Perry Y Li
Viernes 17 de octubre, 2014
08:30 -- 09:30
Krystal 2, ViP-1.1

Resumen: Wind is increasingly becoming an important source of energy around the world. Yet, the effective utilization of wind energy is hampered by wind’s intermittency and unpredictability, the temporal and geographic mismatch between the availability of wind and the demand for power. These characteristics make integrating wind energy into the electrical grid problematic. In addition, wind turbines typically have capacity factor of less than 40%, meaning that capitalization in electrical components are under-utilized. This is especially wasteful in the case of off-shore wind turbines as electrical connect and cabling represent a significant balance of plant cost. These issues can be significantly alleviated if an energy storage system can be integrated with a wind turbine or a wind farm. It can store energy when there is excess power input, and supplement power when demand is larger than supply. Electrical system can also be downsized for mean rather than peak power. Compressed air energy storage is a potentially cost-effective, scalable storage option. A novel compressed air energy storage concept has been proposed by our research group which does not require natural gas or depend on specific geographic locations (as needed in a conventional approach). The new approach relies on a near isothermal high pressure compressor/expander, and an “open accumulator” architecture that combines both the energy density advantage of hydraulics and the power density advantage of pneumatics.

In this talk, I will present the novel CAES concept focusing on the control needed to operate the system. Three levels of control will be discussed: 1) at the compressor/expander level, optimal control of the compression/expansion profile is used to significantly increase the efficiency and power density; 2) at the plant level, control is needed to maximize the wind energy capture, and the satisfaction of power demand while satisfying the components’ bandwidth limitation; 3) at the operational level, supervisory control is needed to determine the optimal strategy to maximize revenue for the wind turbine.


Open Accumulator Compressed Air Energy Storage System
Integrated with a Wind Turbine

Semblanza: Perry Y. Li He received his BA/MA in Electrical and Information Science from Cambridge University, his MS in Biomedical Engineering from Boston University and his PhD in Mechanical Engineering from the University of California, Berkeley. Currently he is Professor of Mechanical Engineering at the University of Minnesota. He was the Deputy Director for the Center for Compact and Efficient Fluid Power (CCEFP), a National Science Foundation funded Engineering Research Center (ERC) from its founding in 2006 through 2013. Prior to joining the University of Minnesota, he was on the Research Staff at Xerox Corporation. He was awarded the Japan/USA Flexible Automation Young Investigator Award in 2000. His research interests are in control systems, fluid power and robotics. His recent work includes energy storage for renewable energy, hydraulic hybrid vehicles, human-interactive robots, passivity based control of hydraulic and pneumatic actuators, design of novel efficient fluid power components, underwater vehicles, and xerographic imaging.



Control De Sistemas Eléctricos De Potencia: Un Enfoque Hamiltoniano

Gerardo Espinosa Pérez
Viernes 17 de octubre, 2014
12:00 -- 13:00
Krystal 2, ViP-2.1

Resumen: Los sistemas eléctricos de potencia establecen un ejemplo emblemático del nuevo escenario al que se enfrenta la teoría de control. Son sistemas naturalmente complejos que, debido a la inserción de nuevas tecnologías tanto en las unidades generadoras como en las líneas de transmisión y cargas, plantean una problemática de control excesivamente complicada. De manera paradójica, son estas nuevas tecnologías las que ofrecen también nuevas alternativas para garantizar una operación segura y confiable de la red, al contar con dispositivos basados en electrónica de potencia y novedosos sistemas de comunicación (la capa digital), entre otros. El objetivo de esta plática es ilustrar cómo el adecuado uso del modelado puede jugar un papel fundamental para encontrar soluciones de control en los diferentes niveles que puede ser dividida la estructura de la red. Específicamente, se muestra primero cómo este tipo de sistemas se puede descomponer en la interconexión de sistemas dinámicos con estructura Hamiltoniana que en su conjunto definen un nuevo sistema con el mismo tipo de estructura. Posteriormente, se revisan algunas experiencias exitosas en el control de los elementos por separado para terminar mostrando que la red en su conjunto puede ser abordada desde la perspectiva del control de sistemas multi-agente con estructura Hamiltoniana. A lo largo de la plática se establece una relación entre los problemas particulares de las redes de potencia con la problemática que existe en el control de sistemas Hamiltonianos en un contexto teórico general.

Semblanza: Gerardo Espinosa Pérez Recibió el título de Ingeniero Mecánico Electricista de la UNAM en 1987, el grado de Maestro en Ciencias en Ingeniería Eléctrica de el CINVESTAV-IPN en 1989 y el grado de Doctor en Ingeniería Eléctrica de la UNAM en 1993 (con mención honorífica), estos dos últimos con especialidad en Control Automático. Ha laborado, bajo diferentes categorías, en la UNAM desde 1986, siendo actualmente Profesor de Carrera de Tiempo Completo Definitivo Titular C. A la fecha ha publicado alrededor de 40 artículos de investigación en revistas de circulación internacional y alrededor de 100 artículos en congresos internacionales. En 1996 su trabajo acerca del Control de Máquinas Eléctricas fue considerado como una de las tres tendencias más importantes a nivel mundial en un artículo de la Revista IEEE Control Systems Magazine. Fue presidente de la Asociación de México de Control Automático durante el bienio 2005-2006 y pertenece desde 1992 al Sistema Nacional de Investigadores, siendo actualmente Investigador Nacional Nivel II. A la fecha su trabajo de investigación ha recibido alrededor de 750 citas. Su línea principal de investigación es el control de sistemas no lineales con un enfoque energético.