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Abstract: This paper presents a controller design to solve speed tracking problem for a
permanent magnet synchronous motor (PMSM). This scheme is based on interconnection
and damping assignment passivity-based control (IDA-PBC) technique recently proposed
to solve the tracking control problem for mechanical underactuated system. The proposed
approach consists in regulating the dynamics of the tracking error, with a port-controlled
Hamiltonian (PCH) structure, to zero. The stability proof and numerical results that illustrate
the performance of the controller are presented.
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1. INTRODUCTION

Passivity-based control (PBC) is an important tool in
nonlinear control design, mainly because of its straight-
forward application to physical systems. Interconnection
and damping assignment passivity-based control (IDA-
PBC) has been introduced in Ortega et al. (2002b) as
a technique that regulates the behaviour of a nonlinear
systems assigning a desired port-controlled Hamiltonian
(PCH) structure to the closed-loop.
Since the introduction of IDA-PBC many controllers have
been reported in the literature, applied to mechanical sys-
tems (Ortega et al. (2002a)), power systems ((Maya-Ortiz
and Espinosa-Perez, 2004), Galaz et al. (2003)), electrical
machines (Petrovic et al. (2001), Akrad et al. (2007))
among others. However, the basic IDA-PBC is restricted
to stabilization of fixed points and the tracking is consid-
ered an open issue (Ortega and Garcia-Canseco, 2004).
In this sense, the stabilization problem of Hamiltonian
systems has been much investigated because it can be
performed by modifying the energy function and injecting
damping. However, for trajectory tracking control is nec-
essary to modify the energy function into a time-varying
one and the time-varying property spoils the passivity
in general (Fujimoto et al., 2003). There are few works
that address the trajectory tracking control problem and
the methodology to do this is not clear. The framework
proposed in the literature to solve this problem is to
convert it into one of stabilization (Fujimoto et al., 2003)
(Borja and Espinosa, 2013) but it is not always possible,
the Hamiltonian structure could be not preserved. Hence,
in Fujimoto et al. (2003) is presented a way to satisfy this

condition via generalized canonical transformations only
for PCH systems. Nevertheless, in Borja and Espinosa
(2013), a methodology to solve this problem for mechan-
ical underactuated systems is proposed. The procedure
consists in obtaining an error system taking advantage
of the interconnection between the realizable trajectories
and the system that preserves the PCH structure.The
tracking is achieved when the error system is stabilized
to zero.
The goal of this paper is present the controller design
using this approach to achieve the speed tracking trajecto-
ries in a permanent magnet synchronous motor (PMSM).
The remainder of this paper is organized as follows. In
section 1, the IDA-PBC method is introduced. The strat-
egy to solve the trajectory tracking control is recalled
in section 2. In section 3, the controller design and the
dynamic of trajectories are described. Simulation results
are presented in section 4.

2. IDA-PBC METHODOLOGY

IDA-PBC was introduced as a method to control physical
system described by port-Hamiltonian models of the form

Σ :


ẋ = [J(x)−R(x)]

∂H

∂x
(x) + g(x)u

y = gT (x)
∂H

∂x
(x)

(1)

where x ∈ <n is the state vector, u ∈ <m is the control
action with m < n, H : <n → < is the total stored energy,
J(x) = −JT (x), R(x) = RT (x) ≥ 0 are the natural
interconnection and damping matrices, respectively. The
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choice of PCH models was motivated by the fact that
they are natural candidates to describe many physical
models. However, the IDA-PBC methodology is extended
to a more general class of systems as described in the
following proposition.

Proposition 1. (Ortega and Garcia-Canseco (2004))
Consider the system

ẋ = f(x) + g(x)u (2)

Assume there are matrices g⊥(x), Jd(x) = −JdT (x),

Rd(x) = Rd
T (x) ≥ 0 and a function Hd : <n → < that

verifies the partial differential equation (PDE) :

g⊥(x)f(x) = g⊥(x) [Jd(x)−R(x)]∇Hd, (3)

where g⊥(x) is a full-rank left annihilator of g(x), that is,
g⊥(x)g(x) = 0, and Hd(x) is such that

x∗ = arg minHd(x) (4)

with x∗ ∈ <n the equilibrium to be stabilized. Then, the
closed-loop system (2) with u = β(x), where

β(x) =
[
g⊥(x)g(x)

]−1
g⊥(x)

×{[Jd(x)−R(x)]∇Hd − f(x)} (5)

takes the PCH form

ẋ = [Jd(x)−Rd(x)]∇Hd (6)

with x∗, a (locally) stable equilibrium. It will be asymp-
totically stable if, in addition, x∗, is isolated minimum of
Hd(x) and the largest invariant set under the closed-loop
dynamics (6) contained in{

x ∈ <n|[∇Hd]
T
Rd(x)∇Hd = 0

}
(7)

equals x∗. An estimate of its domain of attraction is given
by the largest bounded level set {x ∈ <n|∇Hd ≤ c}.

Proof. Setting up the right-hand side of (2), with u =
β(x), equal to the right-hand side of (6) we get the
matching equation

f (x) + g (x)u = [Jd(x)−Rd(x)]∇Hd. (8)

Multiplying on the left by g⊥(x) we obtain the PDE (3).
The expression of the control is obtained by multiplying
on the left the pseudo-inverse of g(x). Stability of x∗ is
established noting that, along the trajectories of (6), we
have

Ḣd = −[∇Hd]
T
Rd(x)∇Hd ≤ 0. (9)

Hence, Hd(x) qualifies as a Lyapunov function. Asymp-
totic stability follows immediately invoking La Salle’s in-
variance principle and the condition (7). Finally, to ensure

that the solution remain bounded, we give the estimate
of the domain of attraction as the largest bounded level
set of Hd(x).

3. TRACKING VIA IDA-PBC

The objective of IDA-PBC methodology is to design a
control law such as the interconnection between the sys-
tem and the controller results in a desired structure and
energy function with a minimum in the desired equilib-
rium point. In this way, in Borja and Espinosa (2013),
a methodology to solve the tracking control problem for
mechanical underactuated system is presented. The ob-
jective of this technique is to get a controller such that
the interconnection between it, the trajectories and the
system results in a desired structure and energy function.
Notice that the interconnection between the trajectories
and the system represents the tracking error dynamics,
therefore if the controller stabilize it to zero then it is
possible ensure that the tracking trajectories is achieved.
This approach is described in the following.

3.1 Trajectory tracking strategy

Suppose the system in generalized coordinates given by[
q̇
ṗ

]
=

[
0 I
−I 0

] [
∇qH
∇pH

]
+

[
0
G(q)

]
u (10)

where (q, p) ∈ <n are the generalized position and mo-
menta, respectively. The matrix G(q) ∈ <n×m represents
the way that the control acts to the system. In other hand,
the energy function of the system is given by

H =
1

2
pTM−1(q)p+ V (q) (11)

where M ∈ <n×m is the inertia matrix and V (q) is the
potential energy. Consider the tracking error definition
x̄(t) = x(t)−xd(t). Applying this definition to the system
(10), it is possible to define the error system of the form[

˙̄q
˙̄p

]
=

[
0 I
−I 0

] [
∇qH
∇pH

]
+

[
0
G(q)

]
u−

[
q̇d
ṗd

]
(12)

where qd and pd are the desired trajectories. The physical
systems presents limitations in the behaviour that can be
imposed. For this reason the desired trajectories neces-
sarily must be restricted to behaviours that the system is
able to realize. Thus, consider the following definition.

Definition 1. A trajectory is realizable if and only if
there exist at least one u∗ such that the states of the
closed-loop system satisfy x(t) = xd(t). In case there is
no exist any u∗ then the trajectory xd(t) is not realizable.

Consider that pd = M(q)q̇d, consequently the dynamic of
trajectories can be described as follows[

q̇d
ṗd

]
=

[
0 I
−I 0

] [
∇qdHa

∇pdHa

]
+

[
0
G(q)

]
u∗ (13)



Ha =
1

2
pd

TM−1(q)pd + V (qd) (14)

Therefore, the open-loop system error is defined as[
˙̄q
˙̄p

]
=

[
0 I
−I 0

] [
∇qH
∇pH

]
−
[

0 I
−I 0

] [
∇qdHa

∇pdHa

]
+

[
0
G(q)

]
ū (15)

Once obtained the error system, the next step is to
stabilize it via IDA-PBC. If the error is stabilized x̄∗ = 0
then tracking is achieved. For any system it is important
that the trajectories are realizable, this fact allows to be
able to solve the PDE associated to this approach and find
the controller that solve the problem (Borja and Espinosa
(2013)). Notice that it is necessary to know the realizable
trajectories in order to compute the controller from their
dynamics. For some systems it is a simple task, however,
for others this is difficult and it becomes a disadvantage
of this approach.

For the system (2), the desired closed-loop error system
has the following structure

˙̄x = Fd(x̄)∇Hd(x̄) (16)

where the desired energy function, say Hd(x) satisfies

x∗ = arg minHd(x) with the condition
[
Fd(x̄) + Fd

T (x̄)
]
≤

0.

Assume the next conditions

• The equilibrium x∗ = 0 is assignable to the error
system of (2).
• There exist a structure (16) that satisfies the PDE

(Borja and Espinosa, 2013).

If the condition described above are satisfied, then the
controller that stabilizes the error system to zero is given
for the next equation

u =
(
gT g)

)−1
gT [Fd(x)∇Hdx̄− F (x)∇Hx+ ẋd] (17)

4. MAIN RESULT

4.1 PMSM model

The PMSM is described in (dq) coordinates as follows
(Chiasson (2005))

Ls
did
dt

= −Rsid + npωLsiq + ud

Ls
diq
dt

= −Rsiq − npωLsid −Kmω + uq

J
dω

dt
= Kmiq − τL

(18)

where Rs is the stator resistance, Ls is the stator induc-
tance,Km is the back-efm constant, J is the rotor moment
of inertia, np is the number of pole pairs, ω is the angular
speed of the rotor, id, iq are the direct and quadrature
currents, ud, uq are the direct and quadrature voltages
and τL is the load torque.

Assume the following condition

• The variables id, iq and ω are available for measure-
ment.

• The parameters R, L, np, Km and J are known.
• The load torque τL is constant but unknown.

Considering

x =

[
x1
x2
x3

]
=

[
Lsid
Lsiq
Jω

]
(19)

and the energy function H(x) = 1
2x

TQx with

Q =


1

Ls
0 0

0
1

Ls
0

0 0
1

J

 (20)

where the gradient of H(x) is

∇H(x) =

[
1

Ls
x1

1

Ls
x2

1

J
x3

]T
(21)

Then, the system (18) with F (x) = J(x) − R(x) can be
written in form

ẋ = F (x)∇H(x) + g(x)u (22)

where the damping matrix is given by

R(x) =

[−Rs 0 0
0 −Rs 0
0 0 0

]
(23)

and the interconnection matrix

J(x) =

[
0 0 −npx2
0 0 −Km + npx1

npx2 Km − npx1 0

]
(24)

4.2 The error system

Consider that the desired trajectories have the form

[
ẋ1d
ẋ2d
ẋ3d

]
=


−Rs

Ls
0

npx2d
J

0
−Rs

Ls

−Km + npx1d
J

0
Km

Ls
0


[
x1d
x2d
x3d

]
+ ua

(25)

According to the last section and considering the physical
constraints, it is possible to obtain the the open-loop error
dynamics

 ˙̄x1
˙̄x2
˙̄x3

 =


−Rs

Ls
0

npx̄2
J

0
−Rs

Ls

−Km + npx̄1
J

0
Km

Ls
0


[
x̄1
x̄2
x̄3

]
+ ū (26)



4.3 Controller and stability analysis

Proposition 2. Consider the open-loop error dynamics
(26) with a desired equilibrium point

x̄∗ = [ 0, 0, 0 ]
T

(27)

The control law

ū =

 −Rs (Kd − 1)

Ls
x̄1 +

np
J
λ1 +

npKc

J
x̄2x̄3

Rs (Kd − 1)

Ls
x̄2 −

npKc

J
x̄1x̄3 +

np
J
λ2 +Kmx̄3


(28)

where λ1 = x2x3 − x2dx3d and λ2 = x2x3 − x1dx3d
renders x∗ asymptotically stable with all internal signals
bounded.

Proof. Assume that the trajectories dynamics can be
described in port-Hamiltonian form

ẋd = F (xd)∇xd
H(xd). (29)

Define the desired closed-loop energy function

Hd(x) =
1

2
x̄TQdx̄ (30)

with

Qd =

[
q1 0 0
0 q2 0
0 0 q3

]
(31)

and the desired structure as follows

Fd =

[
F11 F12 F13

F21 F22 F23

F31 F32 F33

]
(32)

Equating the right-hand sides of (26) and (29) and pre-
multiplying by g⊥(x) is obtained the so-called matching
equation. In order to look for a solution, it can be written
in an equivalent way as

F21q1x̄1 + F22q2x̄2 + F23q3x̄3 = −R
L
x̄2

−
(
npx̄1 −Km

J

)
x̄3

(33)

F31q1x̄1 + F32q2x̄2 + F33q3x̄3 = −Km

L
x̄2. (34)

Choosing

Qd =


1

LsKd
0 0

0
1

LsKd
0

0 0
1

JKc

 (35)

and F21 = F33 = F31 = 0, F32 = −KmKd, F22 = −RKd

and F23 = −(npx̄1 − Km)Kc are proposed, where Kd

and Kc are design parameters. In order to preserve the
structure it is proposed F12 = 0, F11 = −RKd and
F13 = npx̄2Kc. Hence, the closed-loop system takes the
desired port-Hamiltonian form

Fd =

[−RsKd 0 npx̄2Kc

0 −RsKd − (npx̄1 −Km)Kc

0 −KmKd 0

]
(36)

Finally, to proof stability Hd(x̄) is taken as Lyapunov
candidate function and

Ḣd(x̄) ≤ −α
(
x̄21 + x̄22

)
≤ 0 (37)

where

α =
2KdRs

L2
s

+
2KdRs

L2
s

(38)

which directly shows that current errors decay to zero.
To proof asymptotic stability, the LaSalle’s invariance
principle is used

Ḣd(x̄) = 0⇒ x̄1 = x̄2 = 0 (39)

According to the system (36)[
˙̄x1
˙̄x2

]
=

[
0
0

]
=
F11q1x̄1 + F12q2x̄2 + F13q3x̄3
F21q1x̄1 + F22q2x̄2 + F23q3x̄3

(40)

then [
˙̄x1
˙̄x2

]
=

[
0
0

]
=

[
0

KmKc

]
q3x̄3 ⇒ x̄3 = 0 (41)

Therefore, the equilibrium point is asymptotically stable.

4.4 Trajectories system

Once the controller is obtained, it is necessary to know the
desired trajectories from dynamics (25). For the PMSM it
is easy to obtain the references for speed tracking. First,
consider a reference ωd(t) as a free parameter chosen
by the user. Then, the remaining trajectories can be
determined from (21) and they are given by

iq
∗ =

J

Km

dω∗

dt
(42)

id
∗ = − RsJ

KmnpLsω∗
dω∗

dt
− Km

npLs
− J

Kmnpω∗
d2ω∗

dt2
(43)

In addition, the trajectories are restricted by the following
equation.

J
dω∗

dt
= Kmiq

∗ − τL. (44)

Hence, it is necessary to know the load torque.

5. SIMULATION RESULTS

The simulation was performed in Matlab/Simulink with
the PMSM parameters given in the table 1 with Kd = 150
and Kc = 120 and without load torque. For the speed
trajectory two cases are presented, the first reference is
ω∗ = 30 sin(t)[rad/s] with an offset of 30[rad/s] and the
other one is a speed profile shown in Fig. 5.
The speed tracking for the first case is shown in Fig. 1, the
reference is depicted with dotted line and the measured
speed solid line. Fig. 2 shows the relative speed tracking
error whose maximum value does not exceed 0.5 [rad/s].
The tracking of the current references of id(t) and iq
(dotted line) and the actual currents (solid line) are shown
in Fig. 3 and Fig. 4, respectively. Moreover, in Fig. 5 the
second reference speed and the actual speed are shown.
The relative speed error is presented in Fig. 6.



Table 1. PMSM parameters

Parameter Value

Stator resistance (Rs) 0.7 [Ω]

Stator inductance (Ls) 0.6 [mH]

Back-efm constant (Km) 0.0355 [V/(rad/s)]

Rotor inertia (J) 0.0000048035 [N −m− s2]

Pole pairs (np) 4
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Fig. 1. Actual speed and reference trajectory.
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Fig. 2. Speed tracking error.
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Fig. 3. Actual current id and the reference trajectory.

6. CONCLUSION

In this paper is presented a speed tracking control law for
a PM synchronous motor via IDA-PBC. One of the disad-
vantage of these controller is the fact that it is necessary
to compute the first and second derivatives of the user
defined reference to generate the remaining trajectories.
However, it is possible to obtain them efficiently from
numerical estimation. Additionally, the load torque has
to be known to satisfy the matching condition since it
is part of the trajectories system. In future work, a load
torque estimator will be included.
Notice that the control law performs both the control
of position and torque. This is achieved for the first
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Fig. 4. Actual current iq and reference trajectory.
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Fig. 5. Actual speed and speed profile.
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Fig. 6. Speed tracking error with a speed profile.

one simply by calculating the derivative of the reference.
The tracking torque trajectories is achieved through the
iq component taking it as the free parameter an then
obtaining the remaining trajectories.
Ongoing work addresses the controller implementation
on an FPGA-based experimental set-up to validate the
numerical results.
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