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Abstract: Joint limits represent unavoidable constraints to be satisfied in robot motion. For
the particular case of redundant robots, the Task-Space Control (TSC) is widely employed
to accomplish robot motion tasks while avoiding joint limits. The TSC framework is able to
simultaneously regulate and track a set of objectives in the task space according to a strict
hierarchy between them. The resulting control law drives the robot towards the objectives.
However, when one or more joint limits are reached the robot’s end-effector could oscillate
during the motion execution. This undesired behavior is due to the instantaneous change
appeared in the corresponding joint velocity profiles. In this paper we provide a solution
to this problem by means of smooth activation and deactivation mechanism based on time-
varying transition functions within the TSC. We demonstrate throughout simulations and real
experiments the effectiveness of the proposed control scheme for a kinematically redundant
mobile manipulator KUKA youBot with eight degrees of freedom.
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1. INTRODUCTION

There exist a long history of efforts in the context of
robot motion and control that have been nicely assembled
in Siciliano and Khatib (2016). One of the fundamental
aspects to be considered is the robot kinematics, which
has been widely studied for several types of mechanisms
such as parallel, soft and redundant robotic systems.
An attractive feature of kinematically redundant robots
is related to their inherent mobility for satisfying task
objectives while exploiting their redundancy to deal with
joint limits. The seminal work of Liégeois (1977) applied
the Gradient Projection Method (GPM) to take into ac-
count joint limits as a secondary objective to be satisfied
by projecting the resulting gradient of these constraints
within the null-space of the primary task Jacobian. Later,
Hanafusa et al. (1981) carefully analyzed different tasks
expressed as convex functions where their gradients are
also incorporated in the same scheme. The operational
space control introduced in (Khatib, 1987) extended these
ideas by projecting the equations of motion of redundant
robotic arms into the robot’s end-effector. This control
framework also uses the redundancy to deal with obstacles
and joint limits formulated as repulsive potential fields
by means of the GPM (Khatib, 1986). Recently, these
methods have been revisited due to the interest for provid-
ing human-like mobility to humanoid robots (Saab et al.,
2013; Estopier-Castillo et al., 2014). In particular, all
these strategies can be formulated in terms of Quadratic
Programs (QP) that allow to consider both equality and
inequality constraints at any hierarchical level. From this

perspective, special attention has been given to inequality
constraints because their activation causes discontinuities
in the joint velocity profiles and as a by-product the
robot could oscillate during the motion execution (Lee
et al., 2012; Han and Park, 2013). To overcome such
undesired behavior Lee et al. (2012) proposed the inter-
mediate desired value strategy, which is based on time-
varying functions that smoothly activate and deactivate
constraints within a transition time interval. This strategy
scales easily when several hierarchical tasks have to be
accomplished by the redundant robot. The same strategy
has been applied within the operational space control in
(Han and Park, 2013).
In this paper we adopt the Task-Space Control (TSC)
framework together with the intermediate desired value
strategy for controlling an omidirectional mobile manipu-
lator in velocity and torque modes. The control law is able
to achieve task space objectives while handling smooth
activation and deactivation of joint limits.
The paper is organized as follows. Section 2 describes the
omnidirectional mobile manipulator model. In particular
the torque distribution between the wheels and the gener-
alized torques. In Section 3 the TSC framework is briefly
recalled to solve both the hierarchical inverse kinematics
and dynamics. Then, in Section 4 we describe the smooth
transition mechanism to activate and deactivate inequal-
ity constraints, and the particular problem of joint limits
is described in Section 5. Finally, some simulations and
experimental results are described in Section 6, and the
concluding remarks are in Section 7.
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2. MOBILE MANIPULATOR MODEL

The equations of motion of a mobile manipulator in
generalized coordinates have the following form:

H(q)q̈ + h(q, q̇) = τ, (1)
where the joint configuration, velocity and acceleration
are q = (qb, qm) ∈ CS = CSb × CSm, q̇ ∈ Rn and q̈ ∈ Rn,
respectively. The robot configuration is composed by the
configuration of the wheeled platform qb ∈ CSb = SE(2)
and the configuration of the manipulator, qm ∈ CSm,
mounted on such mobile platform. Since n = dim (CS)
and 3 = dim (CSb), the dimension of CSm is n − 3. The
inertia matrix H(q) ∈ Rn×n is symmetric and positive
definite, and h(q, q̇) ∈ Rn denotes the Coriolis, centrifugal
and gravity forces. The generalized torques are:[
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depends on the vehicle parameters, and it maps the
wheel’s torques fb ∈ R4 to the vehicle generalized torques
τb = [τx τy τψ]T ∈ R3 as it can be observed in Fig-
ure 1.(a). The generalized torques of the manipulator
attached to the vehicle are denoted by τm ∈ R3−n as
it is illustrated in Figure 1.(b).

(a) Top view (b) Side view

Figure 1. The mobile manipulator. Left: torque dis-
tribution of the mobile platform. Right: kinematic
structure of the mobile manipulator.

3. TASK-SPACE CONTROL

One of the purposes of the task-space control is to exploit
the kinematic redundancy of the robot. This kind of
redundancy appears when the dimension of CS is greater
than the dimension of the task space T S. In other words,
m < n where m = dim (T S).
A task can be either defined at kinematic or dynamic
level by means of an error function in terms of the robot’s
configuration together with the corresponding differential
mapping between the task and control spaces of the
robotic system (Samson et al., 1991):

e = x(q)− xd ∈ T S (4)

where x(q) is evaluated by computing the forward kine-
matics, xd is the desired value of the task. The behavior
of the task error in terms of the control is (Saab et al.,
2013):

ė = Qu− µ (5)
where Q is the differential mapping between task and
control spaces, and µ is the drift of the task. For first
order systems, Q = J is the task Jacobian J = ∂e

∂q , µ = 0
and u = q̇ such that:

ė= Jq̇ (6)
For second order systems, e is assumed to be twice
differentiable with respect to time:

ë= Jq̈ + J̇ q̇ (7)
Solving for q̈ in (1) and plugging it in (7), yields:

ë = JH−1τ − JH−1h+ J̇ q̇. (8)
In this case Q = JH−1, u = τ and µ = JH−1h− J̇ q̇
The control law becomes:

u = Q]W (ë+ µ) (9)
where

Q]W = WQT (QWQT )−1. (10)
is the right pseudo-inverse of Q weighted by a symmetric
positive-definite matrixW . For inverse kinematicsW = I
and for inverse dynamics W = H. The next ingredient is
to impose an exponential convergence of the error for first
and second order systems as follows:

ė=−Λpe (11)
ë=−Λpe− Λv ė (12)

where Λp and Λd are diagonal matrices with positive
constant gains of appropriate dimensions.

3.1 Simultaneous execution of tasks

The control law (9) considers a single task. However, a
stack of r tasks similar to (8) can be simultaneously solved
if the redundancy of the robot is enough, i.e. m1 + . . . +
mr ≤ n. In this case, the control law for r tasks becomes:

u =

Q1
...
Qr


]W
ë1 + µ1

...
ër + µr

 . (13)

3.2 Simultaneous execution of hierarchical tasks

The definition of hierarchical tasks allows to handle
conflicts between them by projecting the solution of tasks
with less hierarchy into the shared null-space of previous
tasks with greater hierarchy. Let us define the null-space
projector as:

N = I −Q]WQ, (14)
By applying this operator, the recursive projection for p
hierarchical tasks is (Siciliano and Slotine, 1991; Baer-
locher and Boulic, 2004):



u=
p∑
k=1

uk, (15)

where

uk =Q
]W

k (ëk + µk −Qkuk−1) ,

Nk =Nk−1 −Q
]W

k Qk

such that u0 = 0, Qk = Nk−1Qk, W = H and N0 = In.
The control law (15) considers p hierarchical tasks.

4. HANDLING SMOOTH TASK TRANSITIONS

The stack of tasks used in (13), and the hierarchy defined
in (15), are commonly assumed to be fixed along the robot
motion. However, if at some instant of time a task is
added to or removed from the stack, discontinuous input
signals occur which lead to instability of the system. This
is directly related to the instantaneous change of the rank
of Q in (10) (see Keith et al. (2011)). Such undesired
behavior can be avoided by defining transition intervals
where some ξ function continuously evolve between 0 and
1. Thus, a task is in transition when it is activated or
deactivated.
We adopted the strategy suggested in Lee et al. (2012) to
define intermediate desired values ëi for considering the
contribution of the tasks different from j to perform the
j task. According to this strategy, the control law (13) is
modified as follows:

u =

Q1
...
Qr


]W
ë

i
1 + µ1
...

ëir + µr

 , (16)

Each intermediate value ëij is defined as
ëij = ξj ëj + (1− ξj)Qju[\j], (17)

where the transition function ξj varies from 0 to 1, j =
{1, · · · , r}, and u[\j] denotes the control law for all tasks
different from j task, and it is expressed as:

u[\j] =



Q1
...

Qj−1
Qj+1
...
Qr



]W 

ë1 + µ1
...

ë(j−1) + µ(j−1)
ë(j+1) + µ(j+1)

...
ër + µr


(18)

5. JOINT LIMITS AVOIDANCE

The feasibility of the task is inherently constrained by the
joint limits of the robot arm. Such constraints are natu-
rally formulated as inequalities. If the robot arm reaches
a joint limit, the corresponding inequality is activated. In
other words, the inequality switches to an equality for re-
stricting the robot motions before the joint configuration
contacts the forbidden region. In these terms, the abrupt
change generates discontinuous signals and, consequently,
some vibrations of the mobile manipulator could appear.

Smooth deactivation

Smooth activation

Figure 2. Buffers for smooth joint limit transitions.
To deal with this kind of constraints we define a stack of
tasks denoted by ël at the first hierarchical level with the
following form:

ëlj = λpj
(q̃j − qj)− λvj

q̇j , (19)
where λpj and λvj are positive constant gains. The current
joint position and velocity values are qj and q̇j , respec-
tively. The bound is computed as:

q̃j = q̄j − β (20)
where q̄j is the upper limit and β represents an activation
buffer. The task definition for the lower limit is similar to
(20), but in this case the bound is computed as:

˜
qj =

¯
qj + β. (21)

where
¯
qj is the lower limit of joint j. The differential

mapping for the stack of joint limits task Ql contains
the joint limits Jacobian Jl, which is a row-dimension-
variable matrix because each of its rows corresponds to
an active, or in transition, joint limit. The j row of Jl has
the following form:

Jlj = [0 · · · αj · · · 0] ∈ R1×n, (22)
where αj = 1 if qj is reaching the joint limit, i.e. the
constraint is active in the stack of joint limits task,
otherwise αj = 0. It is at this stage when we apply the
transition functions to smoothly handle the addition and
removal of joint limit constraints. The main purpose of
these transitions is to avoid an abrupt stop of the robot
motion, or an instantaneous change of motion direction
that could damage the robot actuators.
For the particular case of joint limits, the transition
function ξj in (17) depends on the time-varying joint
coordinate qj , and it is defined as follows (see Figure 2):

ξj =



1, if qj ≥ q̄j
f(qj), if q̃j < qj < q̄j
0, if

˜
qj ≤ qj ≤ q̃j

g(qj), if
¯
qj < qj <

˜
qj

1, if qj ≤
¯
qj

(23)

where

f(qj) = 1
2 + 1

2 sin
(
π

β
(qj − q̃j)−

π

2

)
(24)

g(qj) = 1
2 + 1

2 sin
(
π

β
(qj −

˜
qj) + π

2

)
(25)

The control law associated to the joint limits task



(a) The robot’s initial posture. (b) The desired pose of the
robot’s end-effector.

Figure 3. The experimental scenario for reaching a
small ball without colliding with a static obstacle.

together with the intermediate desired value strategy
becomes:

ul =


Ql1
...
Qlj
...
Qlr



]W


ëil1 + µl1
...

ëilj + µlj
...

ëilr + µlr

 , (26)

with
ëilj = ξj ëlj + (1− ξj)Qljul[\j] , (27)

where ul[\j] is computed as in (18). The null-space pro-
jector of the joint limits task is:

Nl = I −Q]W

l Ql, (28)
which is used to project secondary tasks as follows:

u = ul +Nlus, (29)
where us represents the control input of the lower hier-
archical levels as a result of the recursive computation
in (15). For instance, we could define three hierarchical
levels to reach a desired position and orientation with the
mobile manipulator’s end-effector. The first one handles
the active joint limits task as previously described. At
the second hierarchical level the control law regulates the
end-effector’s orientation, and at the third one the control
law regulates the end-effector’s position.

6. SIMULATION AND EXPERIMENTAL RESULTS

The experiments were conducted with an eight degrees
of freedom omnidirectional mobile manipulator KUKA
youBot. It is important to mention that the TSC schemes
are model-based controllers, which means that they rely
on the accuracy of the kinematic and dynamic param-
eters provided by KUKA manufacturer. The computa-
tion of the equations of motion in (1) were performed
with the spatial and recursive formulation introduced by
Featherstone (2010) and implemented in Felis (2017). In
particular, the spatial Newton-Euler algorithm efficiently
evaluates the non-linear terms encoded in h(q, q̇) that ap-
pears in (1). The Composite-Rigid-Body algorithm allows
to efficiently compute the inertia matrix H(q) that is also
widely used in (9). Since the time derivative of the task
Jacobian is needed for each task, we adopted the method
introduced in (Estopier-Castillo et al., 2014) to evaluate
it recursively.

The simulation considered second-order tasks to com-
mand the robot in torque-mode, and the implementation
was coded in MATLAB R2015b. For the experiments, the
computation was carried out at kinematic level on the
robot’s onboard computer. The whole control scheme was
implemented in ANSI C++, and the routines related to
numerical linear algebra used Eigen 3.1.1.
The experimental scenario is depicted in Figure 3. The
controller has to regulate the mobile manipulator from
its initial configuration (see Figure 3.(a)) to a feasible
placement of the robot’s end-effector near the small ball
(Figure 3.(b)).

6.1 Simulation with the torque-mode controller

The TSC law is computed with (15) where the task
with highest hierarchy was designed with (29) to handle
smooth joint limit transitions. At the second hierarchal
level, the robot’s end-effector orientation was regulated
towards a desired orientation parametrized as a quater-
nion for avoiding singularities. At the third hierarchical
level, a reaching task regulated the robot’s end-effector
position to a desired value represented by ball’s position.
It can be seen in Figure 4 that two joint limits are
activated. The top row of Figure 4 shows the profiles of
q1 and q5, respectively. Both joints reached the buffer of
the corresponding joint limit. At the bottom left the joint
velocities of those joints are depicted. As it is observed,
the joint limit activation mechanism did not produce
discontinuities in q̇1 and q̇5. Moreover, the end-effector
position converged smoothly to the desired position as it
is depicted in the bottom right. It is important to mention
that we did not impose an exponential convergence of the
error (12). Instead of that, we applied a predefined time
convergence for a second-order system as it is explained
in Becerra et al. (2017). Thus, we were able to impose
5 seconds to accomplish the reaching task while avoiding
the discontinuity at t = 0 induced by the exponential
convergence.

6.2 Experiments with the first-order kinematic controller

We performed two experiments. In the first one the joint
limits task was not considered. Thus, the first hierarchical
task regulated the end-effector’s orientation to a desired
value, and at the second hierarchical level the end-effector
reaching task was performed in position. The control law
was computed at kinematic level where the robot’s end-
effector’s approached an object. However, a static obstacle
was placed on the floor to interfere the motion of the
mobile platform. Hence, the robot must stop rolling to
avoid a collision with the obstacle. Because of that the
robot activated a repulsive potential field that caused an
abrupt change of the corresponding translational joint
velocity, and as a by-product the end-effector mounted
on the mobile platform oscillated. Also, such oscillation
was amplified by the non-smooth activation of q5. This
undesired behavior is compared with the second experi-
ment where smooth joint limit transitions were considered
in Figure 5. The associated video of these experiments:
https://sites.google.com/site/gustavoarechavaleta/tscmm



(a) Profile of q1. (b) Profile of q5.

(c) Velocity profiles of q̇1 and q̇5. (d) Positioning task error (meters).

Figure 4. The torque-controlled mobile manipulator performs three hierarchical tasks with smooth joint
limit transitions. Top-left: the translational joint q1 is activated due to a static obstacle on the floor. Top-
right: the rotational joint q5 of the manipulator is activated when reaching the desired end-effector position.
Bottom-left: the joint velocity profiles are not discontinuous. Bottom-right: the error convergence of the end-
effector position task.

7. CONCLUSIONS

In this work we have demonstrated with some simulations
and real experiments the use of task transition functions
for smoothly activating inequality constraints associated
to the joint limits of an omnidirectional mobile manip-
ulator composed by eight degrees of freedom. The task
space control framework is a general model-based scheme
suitable to control redundant robots in both velocity and
torque modes. However, we have shown that undesired
robot motion behavior appeared when joint limits are
not carefully handled. Moreover, the kinematically re-
dundancy of the robot has been exploited to simulta-
neously achieve a set of hierarchical tasks by means of
the dynamically consistent projectors and the generalized
inverse. Currently, we are dealing with the sensitivity of
the inverse dynamics (Chang and Jeong, 2012), and we
are working on the incorporation of contact forces.
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