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Abstract: This paper presents real-time implementation of trajectory tracking on a Furuta
pendulum via two fuzzy output regulation schemes: the first one uses convex representations;
the second one employs dynamic mappings. Additionally, the stabilizing part of the control
law is computed by means of linear matrix inequalities, so speed convergence and input
constraints can be directly considered. Simulation and real-time results are given to show the

effectiveness of the approaches.
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1. INTRODUCTION

Tracking a reference is a common task in control systems;
it can be performed via the output regulation theory,
both for linear systems (Francis, 1977) and nonlinear ones
(Isidori and Byrnes, 1990). This problem is solvable if and
only if a set of nonlinear partial differential equations —
better known as the Francis-Isidori-Byrnes (FIB) ones—
has a solution (Isidori, 1995). These sort of equations are,
except in simple cases, very hard to solve analytically.

The output regulation problem consists in finding a con-
trol law such that the tracking error tends asymptoti-
cally to zero; this error signal depends on the system
outputs and some trajectories derived from a neutrally
stable exosystem (Isidori, 1995), i.e., broadly speaking, a
system that generates periodic or quasi-periodic trajecto-
ries. Output regulation provides necessary and sufficient
conditions, but, as mentioned above, requires solving
the FIB equations, which might be impossible to do. In
order to cope with nonlinear output regulation, different
methodologies have been proposed: fuzzy ones (Begovich
et al., 2002; Meda and Castillo, 2009), using linear matrix
inequalities (LMIs) altogether with exact convex models
(Bernal et al., 2012), and computing dynamic mappings
(Meda et al., 2012; Robles and Bernal, 2015).

Based on the above, this paper compares two fuzzy
nonlinear methodologies to perform trajectory tracking:

(1) Via an exact convex representation, based on which
a local regulator is designed for each vertex linear
system; the global control law being a convex inter-
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polation of the local controllers (Meda and Castillo,
2009).

(2) Via dynamic output regulation, which does not solve
the FIB equations, but dynamically incorporate
them into the closed-loop scheme (Meda et al., 2012;
Robles and Bernal, 2015).

Importantly, the methodologies above are implemented
assuming that the state is fully available and that the
fuzzy rule-based system is uniformly distributed in the
state space to cover the region of interest. These are some
of the reasons behind our choice of the Furuta pendulum
as the plant where the schemes above are implemented;
the others being its highly nonlinear nature and the
inherent difficulty of its underactuated nature (Fantoni
and Lozano, 2002).

This paper is organized as follows: the next section
introduces the reader to the Furuta pendulum where
real-time implementations are later performed; section
3 constructs a fuzzy model —better known as a Takagi-
Sugeno (TS) one- for the Furuta pendulum: it will
be important for LMI stabilization purposes; section 4
briefly presents the output regulation schemes trajectory
tracking is based on: fuzzy and dynamic; simulation
and real-time results are given in section 5; this report
concludes in section 6 with some final remarks.

2. THE FURUTA PENDULUM

In Fig. 1, a Furuta pendulum mechanism manufactured
by Quanser is shown; it consists of two joint beams: an
horizontal one which rotates thanks to a DC motor and a
vertical one which is fixed to one end of the first one and
freely rotates. The system is underactuated (Quanser,
2006).



The dynamics of the Furuta pendulum are computed by
means of the Lagrange-Euler methodology, which yields
the following set of differential equations (arguments will
be omitted where they can be inferred by the context):

0=cysin®0 + clgﬁ + ¢4 cos 06 + 202q39' cos 0 sin 0
— 0% sin @ — u(t) (1)
0 = cqcosld + (ca + 03)5 — ¢5gsinf — cp¢? cosfsin @
where ¢ is the angle of the horizontal beam, 6 is the
angle between vertical beam and the upright position,
and w(t) is control input. The parameters of the plant
are: ¢; = 0.0363, ca = 0.0306, 3 = 0.356, cq = 0.0260,
cs = 0.3829, and the gravity acceleration g = 9.81m/s2.

For our control purposes, a state-space representation
z(t) = f(z(t),u(t)) of the system is required; it is
obtained from (1) by choosing the state variables as
x1(t) = @, x2(t) = ¢, x3(t) = 0, and x4(t) = 0, i.e.:

:bl O 1 0 O T O
@2| |00 (n—m2)ns Of |22 —(ca+c3)ns
z3| (00 0 12| T 0 u, (2)
ta] (00 (n3—mna)ns O] Lza €4 COS T37)5
& A(x) z B(x)
where

1 = €4 COST3 (CQI% cosx3 + gC5> sin 1‘3/1’3,
N2 = (o + c3)(cax? — 2cp04 cOS x3) sin a3 /23,
73 = €4 COS xg,(a;:c?l — 2c9x9w4 cOSs T3) Sinxg /X3,

n1 = (casin® 3 + ¢1)(cox3 cos x3 + ges) sin /w3,

N5 = c3 cos® 23 — (ca + ¢3)(casin® x3 + ¢1).

where limg, ,osinzg/x3 = 1. This model will be em-
ployed for further developments.

3. A FUZZY MODEL OF THE FURUTA
PENDULUM

Constructing a fuzzy TS system of (2) can be done by
means of the sector nonlinearity approach (Taniguchi
et al., 2001). To that end, consider the compact set
Q = {|xa| <10(rad/s), |xs|] < 0.3(rad), |z4| < 3(rad/s)};
then, one can identify 4 bounded non-constant terms
z(z) € [20,2}], 1 € {1,2,3,4} in matrices A(z) and

Fig. 1. Scheme of the Furuta pendulum.

B(x); the non-constant terms and their bounds are given
in Table 1.

Table 1. Non-constant terms in (2) and their

bounds
" Lower Upper
Term  Definition bounds z]O bounds zll
z1(z) n —n2 0.0875 0.0976
z(z)  nmz—mA —0.1497 —0.1363
z3(x) 5 —579.0186  —467.9967
z4(x) C4 COS T3 —c4 c4

Each of the nonlinear terms z;(z) can be expressed as a
convex sum of its bounds in the compact set Q:

2t — z(2) zi1(x)
Zz(m):ﬁ(zz())+17 Zw )2/,
2} — 2 2
H—/
w} (z) wh (z)
where the scalar functions w%j (x), l; € {0,1} hold the

convex-sum property in €, that is, wfi(m) € [0,1] and

wh(z) + wh(z) = 1. Since convex sums can be stacked
together, the model (2 ) is algebraically equivalent to:

i= Z Z Z Z wf, (@)w, ()}, (z)w}, ()

11=012=0135=014=0

01 0 O 0
00 zilz:lf 0 —(co + (:g,)?;é3
“Iloo 0" 1]*F 0
00 zézzés 0 zé’sz
A; B;
16
= hi(x) (Aiz + Bu), (3)
i=1

where h;(z) = wi, (z)w}, (z)w] (z)w}, (z), [lilalsls] is the
4-digit binary representation of (l — ), ie{1,2,...,16}.
For instance, h7(z) = wi(z)w?(x)wi(x)wi(z ) leads to
the following linear matrices:

01 0 O 0

10029210 | —(catc3)zd
Ar=1oo 0 1| Br= 0
00 223 0 2329

Due to space reasons, only some of the computed matri-
ces A;, B; are given below:

01 0 0 01 0 0
A= 00—-17.90420 A 00 —17.90420
=100 0 1[>4%=(00 0 1P
00 170.0130 0 00 72.4582 0
01 0 0 01 0 0
Ayq— 00 —144.3065 0 Ay 00 —144.30650
u=loo o 1pAs=loo 0 1]
00 149.5780 0 00 63.7487 0
0 0
38.3310 33.7237
Bi= Bs = 0  Bii= Bis = 0
—14.3820 —12.6534

Note that the fuzzy TS system (3) can be viewed as an
interpolation of linear systems, where the interpolating
functions h;(x), i € {1,2,...,16}, “captured” the system



nonlinearities. Moreover, by construction, these functions
hold the convex sum property >, hi(x) = 1, hi(x) € [0,1]
in Q.

4. TRAJECTORY TRACKING VIA OUTPUT
REGULATION

Consider the nonlinear system:

#(t) = f(x) + g(x)u(t)
w(t) = s(w)
e(t) = Cu(t) — Qu(t), (4)

where z(t) € X C R” is the state vector to be driven,
w(t) € W C R? is the exosystem that provides the
references, and e(t) € RP is the tracking error. For
instance, if the tracked reference is a scalar term, Cx(t)
can be viewed as a scalar output which should follow
Quw(t) which is the exosystem output (reference).

Solving the nonlinear output regulation problem consists
in finding a control law

u=az,w), (5)
such that hm e(t) =

(x(0),w(0)) E Q C X x W as well as @(t) = f(x)r +
g(x)a(z,0) has the origin # = 0 exponentially stable.

0 for any initial condition

Then, the nonlinear output regulation problem has a
solution if and only if (Isidori and Byrnes, 1990):

(1) w = 0is a stable equilibrium point of w = S(w) and
IW W > 0:VYw(0) € W is Poisson-stable.

(2) (f(x),g(x)) has a controllable linear approximation
inz =0.

(3) If there exists mappings z = m(w), 7w(0) = 0, and
u = y(w), y(0) = 0 defined in W ¢ W lncludmg
the origin, such that:

g—:)s(w) —f (r(w)) + g (W) v(w)  (6)
0 =Cr(w) — Qu. (7)

The control law is given by (5) with a(z,w) = v(w) +
K (z —m(w)).

Solving the aforementioned nonlinear partial differential
equations (6)-(7) is a difficult task (Meda et al., 2012).
In this work two fuzzy methodologies are employed in
order to avoid explicitly solving the partial differential
equations:

(1) Via a fuzzy TS model of (2) we can solve local
linear output regulation instances which will be
later interpolated using the very same interpolating
functions of the model (Meda and Castillo, 2009).

(2) Via a dynamic output regulation originally appeared
in the fuzzy context in (Meda et al., 2012) and
later corrected in (Robles and Bernal, 2015), which
has the advantage of being less approximate than
the first scheme, while leading to more involved
expressions for the nonlinear mappings.

The next two subsections develop the methodologies just
described for the Furuta pendulum.

4.1 Trajectory tracking via fuzzy output regulation

This section presents developments which lead to the
output regulation via TS models. It is mainly based on
the linear output regulation approach (Francis, 1977).
Let us summarize it by considering the following linear
system

(t) = Ax(t) + Bu(t), (8)
w(t) = S’w( ) 9)
e(t) = Cx(t) — Qu(t), (10)

where z(t) € X C R" is the state vector to be driven,
w(t) € W C R? is the exosystem that provides the
references, e(t) € RP the tracking error; A € R"*",
B e R™™ C e RP*™ and @ € RP*7 are known constant
matrices.

The output regulation problem consists in finding a
control law

u(t) = Kz(t) + Lw(t),
such that tlim e(t) =
—00
(2(0),w(0)) € @ € X xW.In (Francis, 1977), it is proven

that the output regulation problem has a solution if and
only if

KeR™" LeR™9 (11)
0 for any initial condition

1. Re{o (S)} > 0 (exosystem being neutrally stable).
2. (A, B) is stabilizable.
3. dll e R"*? and I' € R™*? such that:
IS = ATl + BT, 0=CII-Q. (12)
Finally, control law (11) is built with K such that A+BK
is Hurwitz (computed by any method) and L =T — KTI.

Following the idea given in (Meda and Castillo, 2009),
computing a nonlinear control law for the Furuta system
(2) of the form

uth

requires the fuzzy TS model (3) and finding 16 pairs of
gains (IL;,T';), i € {1,2,...,16} such that:

for i € {1,2,...,16}. Thus, each vertex performs local
regulation (Begovich et al., 2002).

(Kz + (T; — KII;) w) (13)

One of the advantages of using fuzzy TS models is that
stabilization conditions are cast as LMIs, this eases the
incorporation of certain performances, such as: decay
rate (or speed converge), input constraints, output con-
straints, etc. Since the goal of the paper is real-time
implementation of nonlinear control laws, we propose to
compute the gain K in (13) by means of the following
LMIs:

A X+B;M + XAT + M"BI + 20X <0, X >0, (15)

T
[a:(lo) ”)((0)} >0, L)V(f ]‘;[ ]>0 Vie{l,2,...,16}, (16)
which are associated to a quadratic Lyapunov function
V(z) = 2T Pz, P > 0. Indeed, the first set (15) corre-
sponds to a decay rate condition while the second set
(16) guarantees |u(t)| < p for a given initial condition
2(0) (Tanaka and Wang, 2001). The gain is recovered by
K = MX~!. There are several approaches for designing
more complex stabilizing control laws, see for instance



(Bernal et al., 2011; Guerra et al., 2012; Marquez et al.,
2016; Gonzélez et al., 2016).

The aforementioned LMI approach allows obtaining a
suitable gain K with sufficient “energy” to reach the
reference while avoiding input saturation.

4.2 Trajectory tracking via dynamic requlation

Another way to face the problem of solving nonlinear
partial differential equation (6)-(7) has been stated in
(Robles and Bernal, 2015): it consists in finding a dy-
namical mapping 7(w) instead of a static one. This can
be done for nonlinear setups of the form

&= A(z)x + B(z)u (17)
w = S(w)w (18)
e=Czr — Qu, (19
altogether with the nonlinear mappings = = w(w) =

II(w)w and u = v(w) = I'(w)w. Hence, equations (6)
and (7) yield

IT = A(TTw)1I + B(Iw)T' — T1S (w), (20)
0=CII - Q, (21)
where the arguments of II = II(w) and I' = I'(w)

have been omitted. Let I, ﬁm and I'; being entries
of their corresponding matrices II, II, and I". Robles and
Bernal (2015) proposed to solve (20)-(21) for I'; and II;;

whenever an explicit solution is possible, and for Hij
when no explicit solution of II;; can be computed.

5. SIMULATION AND REAL-TIME RESULTS

The control task is to design a controller such that
the output y(t) = z3(t) is driven by ws(t), where the
exosystem state is provided by

w(t) _Losﬂw(t).
S

Therefore, we have C' = [0 0 1 0] and @ = [0 1]. Both
the fuzzy approach and the dynamic one employ a single
linear gain K computed via LMIs (15) and (16) with

o =04, p =20, 2(0) =[0012° 0]", thus the obtained
values are:

(22)

1519717 0.012 0.023 0.413 0.073

K= 3.664 and P — 0.023 0.056 0.979 0.174
~189.641 ~ 10.413 0.979 22.068 3.226
12.705 0.072 0.174 3.226 0.555

5.1 Via fuzzy regulation (11;,T;)

In order to perform the task via the fuzzy TS models, the
set of linear equations (14) produces 16 pairs of mappings
(I1;, T';), for brevity only some of them are given below:

[0 —9.465] 0 —5.403
75.723 0 43.223 0
=" 1|0 =] I
| —8 0 | -8 0

[ 0 —6.639] 0 —3.065
53.115 0 24521 0

I = 0 1 , 5= 0 1 )
| —8 0 | -8 0
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Fig. 2. Time evolution of z3(t) and ws(t): simulation
(left) and real-time (right).
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Fig. 3. Control signal u(¢): simulation (left) and real-time
(right).

I, = [016.271), Ts = [0 9.488], ['y; = [0 16.879], and
15 = [0 10.096].

Simulation and real-time implementations are conducted
for initial conditions z(0) = [0 0 12° 0] and w(0) =
[00.1)". Fig. 2 displays the state x3(t) tracking the

reference wo(t). In Fig. 3, it can be seen that control
signal never surpasses the imposed limit 20V.

5.2 Via dynamic regulation

As stated before, solving (6) and (7) is a very difficult
task. Instead, we first employ (21), the following has
been found: H31 = 0, H31 = —1,H41 = 8, H42 =0 and
therefore I3, = I35 = Il47 = Il4o = 0. These values are
substituted in (20), then, the remaining entries of Pi(w),

II(w), and I'(w) can be computed:

Il = Ty + 81Ty

Il = oy — 811y,

T'i1(c2 +c3)
2

Ily; = 8Tlas +

M2
+sinw2 ((e2 + c3) i3 — ca coswapts)
Wa 2
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Fig. 4. State z3(t) and state w2 (¢) nonlinear regulation
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Fig. 5. Control law u(t) nonlinear regulation

where

p1 = sinws ((czsin® wg + 1) g — ¢4 cos wapt3)
o = (ca + c3) (02 sin? wy + cl) — ci cos® wy
pi3 = ca(lgpws + Swy)?
—2¢g cos wy (Ixywy + Hagws) (Ilyawse — 8wy)
Ha = (059 + ¢ cos wa (a1wy + H22w2)2) ;

Fll = 0, and le = m (,UQ (O[]_O(g + wl:;ltz)) And
the mapping I'(w) = [['11 T'12].

Simulation as well as real-time have been performed for
the very same initial conditions as the case above. In
Fig. 4 shows z5(t) being driven by ws(t) while Fig. 5
plots the control signal. It can be seen that the trajectory
tracking is performed better in the fuzzy case; however,
the control law seems to be softer in the dynamic-
mapping case. Worth noticing, the fuzzy case does not
have a mathematical proof of being able to effectively
perform output regulation, in contrast with the dynamic-
mapping approach.

6. CONCLUSIONS

A real-time implementation of trajectory tracking on
a Furuta pendulum has been presented. A comparison
between two fuzzy schemes, namely fuzzy and dynamic
regulation, have been done. It has become apparent that,

despite its lack of mathematical proof, the fuzzy approach
performed better on approximation basis. LMIs have
been employed in both schemes in order to incorporate
performance conditions.

REFERENCES

Begovich, O., Sanchez, E.N., and Maldonado, M. (2002).
Takagi-Sugeno fuzzy scheme for real-time trajectory
tracking of an underactuated robot. IEEE Transac-
tions on Control Systems Technology, 10(1), 14-20.

Bernal, M., Soto-Cota, A., Cortez, J., Pitarch, J.L., and
Jaadari, A. (2011). Local non-quadratic h-infinity
control for continuous-time Takagi-Sugeno models. In
IEEE International Conference on Fuzzy Systems,
1615-1620. Taipei, Taiwan.

Bernal, M., Marquez, R., Estrada-Manzo, V., and
Castillo-Toledo, B. (2012). Nonlinear output reg-
ulation via Takagi-Sugeno fuzzy mappings: A full-
information LMI approach. In Fuzzy Systems (FUZZ-
IEEE), 2012 IEEE International Conference on, 1-7.

Fantoni, I. and Lozano, R. (2002). Non-linear Control for
Underactuated Mechanical Systems. Communications
and Control Engineering. Springer London, UK.

Francis, B. (1977). The linear multivariable regulator
problem. SIAM Journal of Control and Optimization,
15, 486-505.

Gonzdlez, T., Bernal, M., Sala, A., and Aguiar, B. (2016).
Cancellation-based nonquadratic controller design for
nonlinear systems via Takagi-Sugeno models. IFEFE
Transactions on Cybernetics.

Guerra, T.M., Bernal, M., Guelton, K., and Labiod,
S. (2012).  Nonquadratic local stabilization for
continuous-time Takagi-Sugeno models. Fuzzy Sets and
Systems, 201, 40-54.

Isidori, A. (1995). Nonlinear Control Systems. Springer,
London, 3 edition.

Isidori, A. and Byrnes, C.I. (1990). Output regulation of
nonlinear systems. IEEE Transactions on Automatic
Control, 35(2), 131-140.

Marquez, R., Guerra, T.M., Bernal, M., and Kruszewski,
A. (2016). A non-quadratic Lyapunov functional for h
control of nonlinear systems via Takagi-Sugeno mod-
els. Journal of the Franklin Institute, 353(4), 781-796.

Meda, J.A. and Castillo, B. (2009). Synchronization
of chaotic systems from a fuzzy regulation approach.
Fuzzy Sets and Systems, 160(19), 2860-2875.

Meda, J.A., Gomez, J.C., and Castillo, B. (2012). Exact
output regulation for nonlinear systems described by
Takagi-Sugeno fuzzy models. IEEE Transactions on
Fuzzy Systems, 20(2), 235-247.

Quanser, 1. (2006). Mechatronics Control Kit User’s
Manual (Instructor). Mathworks, inc, Natick, MA.
Robles, R. and Bernal, M. (2015). Comments on exact
output regulation for nonlinear systems described by
Takagi-Sugeno fuzzy models. IEEE Transactions on

Fuzzy Systems, 23(1), 230-233.

Tanaka, K. and Wang, H. (2001). Fuzzy Control Sys-
tems Design and Analysis: A linear matriz inequality
approach. John Wiley & Sons, New York.

Taniguchi, T., Tanaka, K., and Wang, H. (2001). Model
construction, rule reduction and robust compensation
for generalized form of Takagi-Sugeno fuzzy systems.
IEEE Transactions on Fuzzy Systems, 9(2), 525-537.



