
A new trajectory tracking controller

for the unicycle mobile robot

I. Estrada-Sánchez, M. Velasco-Villa, and
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Abstract: This work proposes a robust geometric controller to solve the trajectory tracking
problem for unicycle mobile robot. The proposed control design exploits the cascade structure
of the unicycle translational and rotational kinematics. An estimator endows the proposed
controller with the capability to actively reject constant translational disturbances. Numerical
simulation results show the performance of the proposed control algorithm.
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1. INTRODUCTION

The number and complexity of applications of mobile
robots in daily life are increasing. Current research focuses
on the integration of new sensors, the development of
collaborative protocols, and the communication through
the internet. Internet of things opens a new world of
applications for mobile robots. At the core of all these new
demands, a low-level controller runs to ensure that mobile
robots perform as dictated by high-level maker decisions.
Since unicycle mobile robots are underactuated, nonlinear
and satisfy nonholonomic constraints, low-level control
design to solve the regulation and trajectory tracking
problems is an active area of research. The unicycle kine-
matic model falls among the class of nonlinear systems
for which do not exists a continuous state feedback con-
trol rendering the origin asymptotically stable, Brockett
(1983). Additionally, the unicycle attitude has a nonlinear
configuration space, this is, the unit circle. As the unit
circle is not diffeomorphic to the one-dimensional Eu-
clidean space, it is not possible to achieve global asymp-
totic stability with a continuous state feedback, Bhat and
Bernstein (2000).

To go around the topological constraints to stabilize
the unicycle posture, researchers proposed the following
solutions using continuous controllers. The first approach
selects a suitable reference trajectory; then it is possible
to stabilize the unicycle posture around the selected
reference, Jiang and Nijmeyer (1997). The second solution
defines new outputs to command. These outputs link the
unicycle Cartesian position with the unicycle attitude; it
turns out that the unicycle kinematics becomes input-
output linearizable, Morin and Samson (2008), Rouchon
et al. (1993). A third approach suggests changing the
unicycle coordinates to polar coordinates Astolfi (1999)
or Frenet frame coordinates Morin and Samson (2008).
A fourth approach linearizes the unicycle kinematics
dynamically Oriolo et al. (2002). Some other solutions

propose time varying and discontinuous controllers, for
instance Maghenem et al. (2016), Buccieri et al. (2009).

Most of the proposed controllers focus on tackling the
topological constraint imposed by the nonholonomic char-
acteristic of the unicycle kinematics. The limitation to
achieving global stability because of the nonlinear con-
figuration space of the unicycle attitude has attracted
less attention, and it is common to use local attitude
coordinates for control design. Using local coordinates
turns out to be double-valued on the unit circle, as a con-
sequence the closed-loop dynamics exhibits the unwinding
phenomena, Bhat and Bernstein (2000). Additionally, a
Lyapunov-based proof for global stability requires a ra-
dially unbounded Lyapunov function. Radial unbounded-
ness is not achievable for the unicycle attitude as it lives
on the unit circle.

The limitations to achieve global asymptotic stability
with time-invariant continuous controllers in mechanical
systems with configuration spaces non-homeomorphic to
the Euclidean space where pointed out in Koditschek
(1989). The unwinding phenomena consequence of control
design using local coordinates described in Bhat and
Bernstein (2000) led to the development of new control
strategies directly on the nonlinear configuration space
Chaturvedi et al. (2011), McClamroch et al. (2017),
Maithripala and Berg (2015).

This article proposes a trajectory tracking controller for
the unicycle mobile robot considering the nonlinear con-
figuration space of the unicycle attitude. Control design
profits of the cascade interconnection between the trans-
lational and rotational unicycle kinematics. This cascade
interconnection is pointed out in Lee et al. (2013) for
the quadrotor vehicle. A disturbance estimator, based
on the Immersion and Invariance method Astolfi et al.
(2007), endows the proposed controller with the ability to
actively reject constant bounded disturbances acting on
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Fig. 1. Mobile robot, zi and zb point out of the drawing.

the translational kinematics. Numerical simulations show
the performance of the proposed control scheme.

The organization of this document is as follows. Section 2
presents the kinematic model and points out the cascade
interconnection between the translational and rotational
kinematics. Section 3 describes the developments to de-
sign the controller and the disturbance estimator, as well
as, the stability analysis. Section 4 shows the numerical
simulations of the closed-loop dynamics. Finally, Section
5 provides some concluding remarks.

2. KINEMATIC MODEL

Two coordinate frames are needed to define the mobile
robot kinematics; the inertial coordinate frame xiyizi

and the body coordinate frame xbybzb, see Figure (1).
The following set of differential equations describes the
kinematic model of the mobile robot, Zhang et al. (1998)

Ẋ = vR2e1 + δ

Ṙ2 = R2

∧

r
(1)

where X = [ x y ]
⊤
is the Cartesian position of the wheel

axis center, v is the mobile robot forward speed, and r is
the rotational speed around the zi axis. Moreover,

e1 =

[
1
0

]
, R2 =

[
r11 r12
−r12 r11

]

with

R2 ∈ SO(2) =
{
R2 ∈ R

2×2
|R⊤

2
R2 = I2, det(R2) = 1

}

the rotation matrix from the inertial coordinate frame to
the body coordinate frame; I2 is the 2×2 identity matrix.

The mapping
∧

(·) : R → so(2) with so(2) the Lie Algebra
of SO(2) composed of the 2×2 skew symmetric matrices,
thus,

∧

r =

[
0 −r
r 0

]

Finally, δ is a disturbance acting on the translational
kinematics.

Assumption 1. The disturbance δ and its first time
derivative δ̇ are continuous and satisfy

µ = supt>0
‖δ̈‖

with µ a positive constant.

Assumption 1 is a common condition for mismatched
disturbances, see for example Ginoya et al. (2014), Yang
et al. (2013).

In the following, v and r are the control inputs.

The work in Lee et al. (2013) describes the cascade
interconnection between the translational dynamics and
the rotational kinematics for a quadrotor vehicle. Here,
the change of coordinates employed in Lee et al. (2013)
is used to point out the cascade interconnection between
translational and rotational kinematics. For, note that the
translational kinematics can be written as follows

Ẋ = vR2e1

(
e⊤
1
R⊤

2dR2e1

e⊤
1
R⊤

2dR2e1

)
±

vR2de1

e⊤
1
R⊤

2dR2e1
+ δ

where R2d is the desired rotation matrix. Then, it follows
that

Ẋ =
vR2de1

e⊤
1
R⊤

2dR2e1
+Ψ(R2, R2d, v) + δ

with

Ψ(R2, R2d, v) =
v

e⊤
1
R⊤

2dR2e1

[(
e⊤
1
R⊤

2dR2e1
)
R2e1 −R2de1

]

(2)
Now, by defining

v = u⊤R2e1, R2de1 =
u

‖u‖
(3)

with u = [ ux uy ]
⊤

a new control input and ‖ · ‖ the
Euclidean norm, one has

Ẋ = u+Ψ(R2, R2d, v) + δ

Ṙ2 = R2

∧

r
(4)

Equation (4) exposes the cascade interconnection between
the translational and rotational kinematics. Note that,
the convergence of the rotation matrix to the desired
rotation matrix implies that Ψ converges to zero.

3. CONTROLLER DESIGN AND DISTURBANCE
ESTIMATOR

At this point, it is possible to state the control objective.
Design control inputs u and r such that the Cartesian po-
sition of the wheel axis center converges to a differentiable
desired position, while actively compensating the effect of
the disturbance.

First, the disturbance estimator is designed as follows.
Define the following estimation errors, Astolfi et al. (2007)

z1 = δ − η1 + β1(X)

z2 = δ̇ − η2 + β2(X)
(5)

Note that
lim
t→∞

z1 = 0 ⇒ lim
t→∞

(η1 − β1) = δ

lim
t→∞

z2 = 0 ⇒ lim
t→∞

(η2 − β2) = δ̇

thus; the estimator design objective is to define the
dynamics of η1 and η2 in such a way that the estimation
errors z1 and z2 asymptotically converge to zero.

Defining

η̇1 = η2 − β2 +
∂β1

∂X
(vR2e1 + η1 − β1)

η̇2 =
∂β2

∂X
(vR2e1 + η1 − β1)

(6)

one obtains
Ż = AZZ +BZ δ̈ (7)

where

Z =

[
z1
z2

]
, AZ =

[
−Γ1 I2
−Γ2 02

]
, BZ =

[
02
I2

]

∂β1

∂X
= −Γ1,

∂β2

∂X
= −Γ2



with Γ1 and Γ2 positive definite matrices and 02 is a 2×2
matrix with zero elements.

Proposition 2. Consider that Assumption 1 holds and
assume that there exist Γ1 and Γ2 such that AZ is a
Hurwitz matrix. Then, the estimation error dynamics is
input to state stable.

Proof. Conditions of Lemma 4.6 of Khalil (2002) are
satisfied with

VZ = Z⊤PZZ, with, A
⊤

ZPZ + PZAZ = −I4

where I4 is a 4× 4 identity matrix, and

V̇Z ≤ −(1− θ)‖Z‖2, ∀ ‖Z‖ ≥
2λM (PZ)

θ
‖δ̈‖

0 < θ < 1, λM (PZ) the largest eigenvalue of PZ .

Now, the proposed controller is described. Consider a
continuous desired translational trajectory denoted by
Xd. The tracking error is

X̃ = X −Xd

From equation (4), the virtual control input u is defined
as

u = −KP X̃ − (η1 − β1(X)) + Ẋd (8)

The term η1 − β1(X) compensates the action of δ. From
equation (3) it is noticed that the definition of u fixes
the control input v and the first column of the desired
rotation matrix R2d.

The desired matrix R2d must be orthonormal. This can
be achieved by defining

R2d =
1

‖u‖

[
u

∧

1u

]

The distance between R2 and R2d can be measured from
the navigation function defined as, Koditschek (1989), Lee
et al. (2013),

ϕ(R̃2) = tr
(
I2 − R̃2

)
(9)

with tr(·) is the trace of (·) and R̃2 = R⊤

2dR2. The

navigation function has a local minimum at R̃2 = I2,
Koditschek (1989).

The error between R2 and R2d is computed from the
gradient of the navigation function. The gradient of the
navigation function is given as

dϕ =
1

2

(
R̃2 − R̃⊤

2

)∨

= eR

with (·)∨ : so(2) → R the inverse of the map (̂·).
Moreover,

ėR =
1

2
tr(R̃2)r̃

where
r̃ = r − rd (10)

and

rd =
(
R⊤

2dṘ2d

)∨

From equation (10) the control input r is defined as
follows

r = rd −
kr

2

tr(R̃2)

1 + tr(R̃2)2
eR (11)

with kr is a positive gain.

Even when the observer (6) can deal with time varying
disturbances, to show formally the convergence of the
tracking error of the closed–loop system (1)–(8)–(11),

Assumption 1 will be relaxed to ask δ to be a bounded
constant disturbance. As a result, the estimator error
dynamics reduces to the following equation

ż1 = −Γ1z1 (12)

Additionally, note that using (3) and the fact that R̃2 ∈
SO(2), the term (2) can be written as follows

Ψ = ‖u‖

(√
1− e2RR2e1 −R2ϕ(eR)

)
,

ϕ(eR) =

[√
1− e2R
−eR

]

thus; the following equations describe the mobile robot
kinematic model in closed-loop with the control inputs
(8)-(11) and the disturbance estimator (6)

˙̃
X = −KP X̃ + ‖u‖

(√
1− e2RR2e1 −R2ϕ(eR)

)
+ z1

ėR = −
kr

2

tr(R̃2)
2

1 + tr(R̃2)2
eR −

1

‖u‖2
z⊤
1
(Γ1 +KP ) −̂1u

ż1 = −Γ1z1
(13)

Assumption 3. The constant disturbance satisfies

‖δ‖ ≤ µ1

with µ1 a positive constant. The time derivative of the
desired trajectory is bounded, this is,

µ2 ≤ ‖Ẋd‖ ≤ µ3

with µ2 and µ3 positive constants.

Now, the solution to the tracking problem is stated as
follows.

Proposition 4. Consider Assumption 3 holds. Assume
that ‖u‖ 6= 0. Then, the closed-loop dynamics (13) is
asymptotically stable.

Proof. The proof of this result is based on standard
results on stability of cascade systems. First, consider the
cascade composed of the first two equations of (13) with
z1 = 0, this is,

˙̃
X = −KP X̃ + ‖u‖

(√
1− e2RR2e1 −R2ϕ(eR)

)

ėR = −
kr

2

tr(R̃2)
2

1 + tr(R̃2)2
eR

(14)

It is clear that ˙̃
X = −KP X̃ is asymptotically stable.

Since, ‖u‖ 6= 0 implies that tr(R̃2) 6= 0, the eR dynamics
is asymptotically stable. Moreover, eR = 0 implies that

‖u‖

(√
1− e2RR2e1 −R2ϕ(eR)

)
= ‖u‖ (R2e1 −R2e1) = 0

Hence, by Proposition 4.1 of Sepulchre et al. (1997),
the dynamics (14) is asymptotically stable. Asymptotic
stability of the closed-loop dynamics (13) follows as a
result of asymptotic stability of (14) and ż1 = −Γz1, and
Proposition 4.1 of Sepulchre et al. (1997).

4. NUMERICAL SIMULATION

To show the operation of the proposed control algorithm,
numerical simulations were performed. To show the po-
tentially of the proposed solution, the disturbance is mod-
eled as a time varying signal as follows

δ = |v|

[
δx 0
0 δy

]
R2e2



with δx = 0.1 and δy = 0.1. Thus, the disturbance is
equal zero when the mobile robot stops. Notice that this
disturbance can be handled by the observer but is not
allowed in the proof of the tracking convergence.

The first simulation that was carried out is the trajectory
tracking of a square of 4.5 m × 4.5 m. The desired
trajectory was created as described in Table 1. Notice
also that this trajectory imposes an additional restriction
since it is not differentiable at the corners.

Time Desired trajectory Xd

0 < t ≤ 30 Xd = [At, 0]⊤

30 < t ≤ 60 Xd = [30A,A(t− 30)]⊤

60 < t ≤ 90 Xd = [A(90− t), 30A]⊤

90 < t ≤ 120 Xd = [0, A(120− t)]⊤

Table 1. Desired trajectory to track a square
with A = 0.15

The initial conditions were selected as X(0) = [0, 0]⊤ and

R2(0) =

[
0.5 −0.8660

0.8660 0.5

]

The gains for the estimator were selected as Γ1 =
diag {0.5} and Γ2 = diag {0.0625}. This gain selection
placed the estimator poles at {−0.25}. The gain of the
control input u is KP = diag {0.7} and the gain for the
control input r is kr = 2.5.

Figure 2 shows the translational trajectory tracking er-
rors, as can be seen, they converge to zero. Figure 3
presents the convergence of the attitude error eR(t) to
zero.

Figure 4 presents the control signals r, v applied to the
system. The Cartesian trajectory described by the mobile
robot is shown in Figure 5.
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ỹ

Fig. 2. Trajectory tracking errors X̃.

Finally, Figure 6 shows the behavior of the estimated
disturbance.

For the second simulation, a parabolic trajectory was
tracked. The initial conditions and control gains were the
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Fig. 5. Path followed by the mobile robot.

same as those used in the first simulation. The desired
trajectory was constructed as described in Table 2.

The evolution of the state X(t) in the Cartesian plane is
depicted in Figure 7. In Figure 8, the trajectory tracking
errors are shown and as it can be observed they converge



0 20 40 60 80 100 120
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

Time [s]

δ

 

 
δx
δy

Fig. 6. Estimated disturbance η1 − β1.

Time Desired trajectory Xd

0 < t ≤ 50 Xd = [At,Bt2]⊤

t > 50 Xd = [100A−At,B (100− t)2]⊤

Table 2. Desired reference to track a parabola
with A = 0.05 and B = 0.001

to zero. Figure 9 shows the convergence of the attitude

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

x [m]

y
[m

]

 

 
x vs. y

Fig. 7. Path followed by the mobile robot.

error. Figure 10 shows the control signals r, v applied to
the system.

Finally, in Figure 11, the estimated disturbance is pre-
sented.

5. CONCLUSIONS

This paper proposed a new trajectory tracking controller
for the unicycle mobile robot. The proposed controller ac-
tively compensates constant disturbances. The theoretical
developments are validated by means of numerical simu-
lations. As future work, the control-observation scheme
will be implemented in an experimental platform.
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