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Abstract: We consider a mechanistic mathematical model of an anaerobic bioreactor, where
the controlled input is the dilution rate and the measured output is the methane outflow rate.
A steady-state and transient analysis is made to prove that when the dilution rate is alternated
between two values, one below and one above the unknown optimal steady-state maximizing
value, the output signal reaches temporary maxima that could be used for driving the feedback.
A simulation example illustrates the findings and discusses the limitations.
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1. INTRODUCTION

In Mexico there is growing concern for the decrease in
the current fossil fuel production and our dependence
on it for producing energy (SEMARNAT-INECC, 2016).
Research on alternative fuels from renewable sources is an
important current topic, and one of them is biogas, which
is the product of the fermentation of a host of biobased
materials, notably including wastes (OECD/IEA, 2016).

A widely used process used for converting liquid waste into
biogas is anaerobic digestion. In this process, a consortia
of microorganisms degrade the organic matter present in
the waste stream by a set of interconnected biochemical
reactions carried out by specialized microorganisms. In the
final stages of the process, a product is biogas, composed
mainly of methane (CH4) and carbon dioxide (CO2),
but also other gases in trace amounts such as hydrogen
sulfide (H2S) or hydrogen (H2). This biogas is a valuable
renewable fuel that can be used directly for powering
electrical generators or purified into biomethane to be
injected to a natural gas network. The waste feed stream
may be high strength wastewater, excess sludge from
wastewater treatment, or the organic fraction of municipal
solid waste, among others (Batstone, 2006).

One of the main concerns when operating an anaerobic
digester is maintaining a stable operation, with constant
and adequate biogas production while achieving good
treatment standards, despite the inevitable changes in
the waste stream that is fed, both in composition and
concentration. A mathematical model of the process may
aid in the design of a feedback controller that not only
stabilizes the system, but also helps achieve near maximal
biogas productivity (Batstone, 2006).

The anaerobic digestion process is very complex, but can
be well and quite accurately described by models such the
Anaerobic Digestion Model 1 (ADM1) (Batstone et al.,
2002). However, this model is still too complex for analysis
and model-based controller design and simpler models

have been proposed, such as the AM2 model (Bernard
et al., 2001), which is composed of four differential equa-
tions and captures the basic dynamics of the process. Nu-
merous studies have used it as a basis for system analysis
and controller proposals (Antonelli et al., 2003; Sbarciog
et al., 2012). However, it suffers from several drawbacks
when compared to the accuracy of the ADM1, especially
when the substrate is complex and there is an interest in
predicting the physicochemistry of the process. Recently,
Hassam et al. (2015) have proposed the AM2HN model,
which now includes a hydrolysis step and better predic-
tions of the pH and the alkalinity, comparable to ADM1.

In this work, based on the transient analysis of the
AM2HN model, we propose a simple feedback controller
that switches between operation at a low and a high
dilution rate in order to practically maximize the methane
production rate. The main asset of this proposal is that
it does not depend directly on the knowledge of model
parameters, and is based on the qualitative behavior of a
realistically measurable output signal.

The paper is organized as follows. The next section in-
troduces the mathematical model used, i.e. the AM2HN,
followed by the idea behind a controller for maximizing
the methane flow rate and a steady-state analysis. The
next section analyzes the transient when the dilution rate
changes from a low to a high value and viceversa. This is
followed by simulation results and a conclusion.

2. MATHEMATICAL MODEL

The model considers three basic biochemical reactions:
hydrolysis, acidogenesis and methanogenesis, as well as
biomass decay. The components in the liquid phase are:
particulate substrate XT , soluble subtrate S1, volatile
fatty acids (VFA) S2, acidogenic biomassX1, methanogenic
biomass X2, inorganic carbon C (dissolved carbon dioxide
and bicarbonate) and alkalinity Z. In the gas phase only
methane (CH4) and carbon dioxide (CO2) are considered;
gas transfer equations are needed to model their behavior.
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Furthermore, the physicochemistry of speciation is used
algebraically to calculate the pH.

The model differential equations are the following:

Ẋ1 = −X1αD + (µ1(S1)− kd1)X1 (1)

Ẋ2 = −X2αD + (µ2(S2)− kd2)X2 (2)

ẊT =
(
Xin
T −XT

)
D − khydXT (3)

Ṡ1 =
(
Sin1 − S1

)
D − k1µ1(S1)X1 + khydXT (4)

Ṡ2 =
(
Sin2 − S2

)
D + k2µ1(S1)X1 − k3µ2(S2)X2 (5)

Ċ =
(
Cin − C

)
D + k4µ1(S1)X1 + k5µ2(S2)X2 − qc (6)

Ż =
(
Zin − Z

)
D + k1NS1µ1(S1)X1− (7)

−Nbac
(

(µ1(S1)− kd1)X1 + (µ2(S2)− kd2)X2

)
A factor α ∈ [0, 1] is considered for accounting for partial
biomass retention in the reactor (α = 1 corresponds to
a CSTR and α = 0 to perfect retention). The specific
reaction rates are of Monod type for acidogenesis and
Haldane type for methanogenesis:

µ1(S1) =
µ∗1S1

KS1 + S1
, (8)

µ2(S2) =
µ∗2 (S2/S

∗
2 )

S2/S∗2 + β (S2/S∗2 − 1)
2 , (9)

where in the Haldane law the maximum occurs at (S∗2 , µ
∗
2)

and the slope at S = 0 is µ′2(0) = µ∗2/(βS
∗
2 ). Total

alkalinity Z is considered as the sum of the concentra-
tions of all bases in solution. This corresponds basically
to bicarbonate (HCO−3 ), dissociated VFA (S−2 ), and free
ammonia (NH3). In this model, for simplicity, ammoni-
acal nitrogen is not included as a component, but the
nitrogen release dynamics is included by making alka-
linity a reactive species. Ammonium (NH+

4 ) is released
from protein hydrolysis and three components contain
nitrogen: the degradable substrate S1 whose nitrogen con-
tent is NS1 (mmolN/gCOD), and the acidogenic X1 and
methanogenic X2 biomasses, whose nitrogen content is
Nbac (mmolN/gCOD). Alkalinity is decreased by biomass
decay and substrate uptake (due to ammonium release),
but increased by biomass growth (due to nitrogen uptake).

Soluble methane is produced in methanogenesis and its
gaseous outflow rate is assumed to be proportional to the
methane production rate:

qm = k6µ(S2)X2. (10)

On the other hand, the rate of carbon dioxide transfer to
gas phase follows Henry’s law:

qc = kLa (Cco2 −KHPc) , (11)

where kLa is the liquid-gas transfer coefficient, KH is
Henry’s constant, Cco2 is the dissolved CO2 concentration
in the liquid and Pc is the partial pressure of carbon
dioxide in the gas phase, calculated using (Hassam et al.,
2015)

Pc = Φ−
√

Φ2 − Pgas
Cco2
KH

, (12)

Φ =
1

2

(
Pgas +

Cco2
KH

+
qm

kLaKH

)
, (13)

where usually Pgas = Patm and Cco2 depends on the
pH. To calculate it, we must solve a system of algebraic
equations based on the acid-base equilibrium equations.

Basically, we must first solve for pH the following algebraic
equation:

Z+10−pH =
C

1 + 10pKc−pH
+

S2

1 + 10pKa−pH
+10pH−pKw ,

where pKc = 6.31, pKa = 4.77, pKw = 13.68 are the pK
values for the inorganic carbon, VFA and water acid-base
pairs. Finally, the amount of Cco2 is obtained from

Cco2 =
C

1 + 10pH−pKc
. (14)

3. CONTROLLER PROPOSAL

The objective is to maximize the methane flow rate, i.e.
qm, by manipulating the dilution rate D. A steady-state
analysis shows that indeed, if the influent substrate con-
centrations Xin

T , Sin1 , Sin2 are constant, there is an opti-
mal Dopt that maximizes qm in steady-state. However, in
practice we are faced with two problems. First, the value
of Dopt depends on the values of Xin

T , Sin1 , Sin2 , which
might be unknown, and even if we could measure these
concentrations, we might need to know the model exactly
(i.e. all its parameters) to compute Dopt. Secondly, in prac-
tice the influent substrate concentrations are slowly time-
varying and the parameters’ values could have some drift
or uncertainty. This means that usually the input/output
steady state map is unknown, and therefore extremum-
seeking feedback control strategies for this type of systems
have been proposed recently (Wang et al., 1999; Dieulot,
2012; Lara-Cisneros et al., 2014). However, they converge
very slowly, because they imply reaching quasi-steady-
state conditions.

We tackle the extremum-seeking problem differently. In-
stead of waiting for a quasi-steady-state, we take advan-
tage of the qualitative transient behavior of a suitable out-
put measurable signal upon sudden changes in the input
variable, i.e. D(t). In fact, we claim that by alternating
between two values of D, one surely below and another
one surely above Dopt, we obtain an output signal that
will oscillate around the maximum of qm. To prove it we
first make a steady-state analysis of the system (1)–(14)
and then analyze the transient behavior.

4. STEADY-STATE ANALYSIS

For a constant dilution rate D, and constant influent
concentrations Sin1 , Sin2 , Xin

T , Cin and Zin, the system
may have up to five operating points, some of them stable
and some of them unstable. However, if we assume some
realistic parameter values, we can focus the analysis on
only some conditions. Notice that (3) is decoupled from
the rest of the system, so its steady state is simply 1 :

X̄T =
D

khyd +D
Xin
T . (15)

The steady state for alkalinity Z̄ is obtained directly from
(7) if the other values for the steady states have been
computed. Likewise, we can compute the unique solution
for inorganic carbon C̄ from solving (6) and the algebraic
equations (11)–(14).

1 We use the notation ¯ as in X̄1 to denote the steady-state value.



We only then analyze the steady states of subsystem
(X1, X2, S1, S2), given X̄T . This analysis would be prac-
tically the same as the one already reported for the AM2
model (Volcke et al., 2010), substituting Sin1 by

Smax1 = Sin1 +
khyd

khyd +D
Xin
T . (16)

Assuming that D satisfies (kd1 + αD) ≤ µ1(Smax1 ), then
apart from the washout X̄1 = 0, S̄1 = Smax1 , there is
another equilibrium point satisfying

µ1(S̄1) = kd1 + αD, X̄1 =

(
Smax1 − S̄1

)
D

k1 (kd1 + αD)
(17)

Now define

Smax2 = Sin2 +
k2

k1

(
Smax1 − S̄1

)
. (18)

Consider the solution(s) X̄2 > 0, S̄2 > 0, satisfying

µ2(S̄2) = kd2 + αD, X̄2 =

(
Smax2 − S̄2

)
D

k3 (kd2 + αD)
(19)

There will be no solution if (kd2 +αD) > µ∗2, two solutions
if µ2(Smax2 ) ≤ (kd2+αD) < µ∗2, and only one valid solution
if 0 < (kd2+αD) < µ2(Smax2 ) or if exactly (kd2+αD) = µ∗2.
In any case, it can be shown that only the solution with
S̄2 < S∗2 corresponds to a stable steady state.

We now make the following assumptions on the parameters
and inflow concentrations:

(1) Xin
T , Sin1 and/or Sin2 are such that Smax2 > S∗2 ;

(2) µ1(Smax1 ) − kd1 > µ∗2 − kd2 > µ2(Smax2 ) − kd2 ≥
0, which implies that the washout condition for
methanogens X2 occurs before the washout of aci-
dogens X1 if D is gradually increased.

These assumptions imply that as D is increased, we
can have one or two stable equilibria depending on the
following critical values for D

Dcr1 =
µ2(Smax2 )− kd2

α
, Dcr2 =

µ∗2 − kd2

α
,

Dcr3 =
µ1(Smax1 )− kd1

α
, Dcr1 < Dcr2 < Dcr3

(20)

(1) When 0 ≤ D ≤ Dcr1, then the only stable equilibrium
point happens for ξ̄a = (X̄1, X̄2, S̄1, S̄2), cf. (17)–(19).

(2) When Dcr1 < D ≤ Dcr2, then bistablity occurs with
ξ̄a and methanogens washout : ξ̄b = (X̄1, 0, S̄1, S

max
2 ).

(3) When Dcr2 < D < Dcr3, the only stable steady state
is the washout of methanogens with ξ̄b.

(4) When D ≥ Dcr3, the unique stable steady state is the
total washout of biomass: ξ̄c = (0, 0, Smax1 , Smax2 ).

Consider that the output is qm and the desired steady state
ξ̄a. Then, from (19)

q̄m = k6µ2(S̄2)X̄2 =
k6

k3

(
Smax2 − S̄2

)
D. (21)

Let Smin2 satisfy µ2(Smin2 ) = kd2. Using (19), we can write
(21) as a function of S̄, with :

q̄m(S̄2) =
k6

αk3

(
Smax2 − S̄2

) (
µ2(S̄2)− kd2

)
(22)

In the domain S̄ ∈ [Smin2 , S∗2 ], f1(S̄) = Smax2 − S̄2 is a
monotonic decreasing function satisfying

f1 > 0, f ′1 = −1 < 0, f1(Smin2 ) > 0. (23)

Also, f2(S̄) = µ2(S̄2)− kd2 is monotonic increasing with

f2 > 0, f ′2 > 0, f2(Smin2 ) = 0, f ′2(S∗2 ) = 0. (24)

This implies that qm(S̄) = k6
αk3

f1(S2)f2(S2) achieves a

maximum for some S̄opt
2 < S∗2 . To see this, notice that

q′m(Smin2 ) > 0 and q′m(S∗2 ) < 0, so therefore q′m(S̄opt
2 ) = 0

at a unique point S̄opt
2 ∈ [Smin2 , S∗2 ]. Since the relationship

between D and S̄ is injective, cf. (19), for this limited
domain, the corresponding Dopt < Dcr2 is also unique.

Obviously, if the influent concentrations change or the
parameters drift, the values of Dopt, Dcr1, Dcr2 and Dcr3

change, too. However, it may be possible to choose two
values Dlo and Dhi such that we can guarantee that

0 < Dlo < Dopt, Dcr2 < Dhi < Dcr3 (25)

In the following transient analysis we show that qualita-
tively, if D(t) is changed from Dlo to Dhi or if it is changed
from Dhi to Dlo, a transient maximum will occur in the
signal qm(t). However, care should be taken to ensure that
the latter change is made when the state trajectory is still
in the stability region of the desired equilibrium ξ̄a, since
bistability might be present (when D = Dlo).

5. TRANSIENT ANALYSIS

We will analyze the 5D subsystem (1)–(5), since the other
two states are decoupled, but the analysis will be made
reducing it to 2D subsystems.

Let ylo(t; ξ0) be the trajectory of y(t) = qm(t) under the
constant dilution rate Dlo when the initial condition is
ξ0, and likewise, let yhi(t; ξ0) be the trajectory under the
constant dilution rate Dhi when the initial condition is
ξ0. The same notation is meant for the trajectories for
the states: ξlo(t; ξ0) and ξhi(t; ξ0). Furthermore, the stable
steady state for Dhi is the methanogens washout ξ̄hi

b and
for Dlo it is ξ̄lo

a and possibly (if Dlo > Dcr1) also ξ̄lo
b .

This implies that limt→∞ yhi(t; ξ0) = 0 for any ξ0. For
Dlo, define Rlo as the stability region such that ξlo

0 ∈ Rlo

implies limt→∞ ξlo(t; ξlo
0 ) = ξ̄lo

a .

Theorem 1. There exist a set of parameter values of sys-
tem (1)–(5) and influent concentrations such that the
following is true:

• Consider ξhi
0 such that ‖ξhi

0 − ξlo
a ‖ < ε for some ε > 0.

There exists thi
max > t0 such that yhi(t

hi
max; ξhi

0 ) is
maximum with respect to t; that is ẏhi(t

hi
max; ξhi

0 ) = 0
and ÿhi(t

hi
max; ξhi

0 ) < 0.
• Let Thi > thi

max, and thus yhi(Thi; ξ
hi
0 ) < yhi(t; ξ

hi
0 ) and

let ξlo
0 = ξhi(Thi; ξ

hi
0 ) ∈ Rlo. Then there will also exist

tlomax such that ylo(tlomax; ξlo
0 ) is maximum with respect

to t and eventually, when t = Tlo > tlomax, ξlo(t; ξlo
0 )

will reach the ball ‖ξlo − ξlo
a ‖ < ε .

To prove the theorem, consider that (3) is linear when D
is constant. If D changes from Dlo to Dhi and viceversa,
then XT (t) will eventually reach a region bounded by X̄ lo

T

and X̄hi
T . The transient XT (t) will be exponential with rate

(khyd +Dlo) or (khyd +Dhi). Furthermore, if khyd � Dhi,
then X̄hi

T and X̄ lo
T will be small, cf. (15).

Define Sm1 (t) as

Sm1 (t) = Sin1 +
khyd
D

XT (t). (26)



When we change from Dlo to Dhi and back, Sm1 will be
bounded:

Sin1 +
khyd

khyd +Dhi
Xin
T < Sm1 (t) < Sin1 +

khyd
khyd +Dlo

Xin
T .

We can therefore write (4) as follows:

Ṡ1 = (Sm1 − S1)D − k1ρ1 (27)

where ρ1 = µ1(S1)X1. Then ρ̇1 = µ1Ẋ1 + µ′1X1Ṡ1 and

ρ̇1 = X1 (µ1 (µ1 − kd1 − αD) + µ′1 ((Sm1 − S1)D − k1ρ1))

= ρ1

(
µ1 − kd1 − αD +

µ′1
µ1

((Sm1 − S1)D − k1ρ1)

)
(28)

Equations (27)-(28) comprise an approximate 2D system
which we can analyze on the phase plane qualitatively.
It shows (see similar procedure below) that when D(t)
alternates between Dlo and Dhi, S1(t), then ρ1(t) will
oscillate between two values (there is no X1 washout since
Dhi < Dcr3). Particularly, if Sm1 is large enough, then(

Sm1 (t)− S̄lo
1

) Dlo

k1
< ρ1(t) <

(
Sm1 (t)− S̄hi

1

) Dhi

k1
,

where S̄lo
1 is the steady state attained withDlo and likewise

for S̄hi
1 . Furthermore, if the difference Dhi−Dlo is not too

big, this oscillation will also not be significantly large.

We will now consider the system (S2, ρ2), where ρ2 =

µ2(S2)X2, and derivate to get ρ̇2 = µ2Ṡ2 + µ′2X2Ṡ2:

Ṡ2 = (Sm2 − S2)D − k3ρ2 (29)

ρ̇2 = ρ2

(
µ2 − kd2 − αD +

µ′2
µ2

((Sm2 − S2)D − k3ρ2)

)
(30)

where

Sm2 (t) = Sin2 +
k2

D
ρ1(t), (31)

and therefore it is also bounded:

Sin2 +
(
Sm1 (t)− S̄lo

1

) k2

k1
> Sm2 (t) >

Sin2 +
(
Sm1 (t)− S̄hi

1

) k2

k1
.

We will analyze the qualitative behavior of the 2D system
(29)–(30) by looking at the three nullclines:

ρ2 = N1(S2;D) =
D

k3
(Sm2 − S2) (32)

ρ2 = N2(S2;D) =
D

k3
φ2(S2, D) (33)

ρ2 = 0 (34)

where, after some manipulation of (30):

φ2(S2, D) = (Sm2 − S2) +
µ2

µ′2

(
µ2 − kd2 − αD

D

)
(35)

A steady state is the washout where (32) and (34) in-
tersect, at S̄2 = Sm2 , ρ̄2 = 0. Other steady states might
occur where (32) and (33) intersect. When D = Dhi,
µ2(S2) − kd2 − αDhi is always negative so N1 and N2 do
not intersect. When D = Dlo, µ2(S2) = kd2 + αDlo may
have two solutions, but only the one where S̄lo

2 < S∗2 is
stable. Notice that (32) is a line with slope −D/k3, while
(33) has an asymptote at S∗2 :

• If µ∗2 > kd2 + αD (the case for Dlo), then

lim
S2→S∗−

2

φ2(S2;D) = +∞, lim
S2→S∗+

2

φ2(S2;D) = −∞.

• If µ∗2 < kd2 + αD (the case for Dhi), then

lim
S2→S∗−

2

φ2(S2;D) = −∞, lim
S2→S∗+

2

φ2(S2;D) = +∞.

The phase-space is divided in 4 regions, some of them
disconnected and each representing a direction of the
vector fields. For the parameters on Table 1, they are
shown in Figure 1 for Dlo = 0.379 (left) and Dhi = 0.547
(right). The arrows indicate the direction of the vector
fields, and the green circle is the stable steady state.
The green line corresponds to nullcline (32) and the blue
curves to the nullcline (33). Recall that this is the phase
plane of an approximate 2D representation of the system;
the regions will shift as Sm2 (t) changes within bounds
that are ultimately determined by the changes of Xin

T (t),
Sin1 (t) and Sin2 (t). However, the qualitative behavior of the
trajectories is determined by the direction of the vector
fields in the regions, which is unaffected by these changes.

Table 1. Parameters for the (S2, ρ2) system.

Parameter Value Parameter Value

µ∗2 0.45 h−1 α 0.9
S∗
2 90 mg L−1 Sm

2 200 mg L−1

β 0.75 kd2 0.04 h−1

k3 1 mg mg−1

Fig. 1. Phase plane regions for Dlo and Dhi. Color code:
R1=pink, R2=yellow, R3=blue, R4=gray.

Figure 2 shows the input/output steady state map. Notice
that the maximum rate of ρ2 is achieved for

Dopt = 0.421, S̄opt
2 = 64.87, ρ̄opt

2 = 56.48.

Notice that Dopt is very close to Dcr2 = 0.456, while
Dcr1 = 0.288.

Fig. 2. Steady state input/output maps.

Let us call the regions Rlo
i when D = Dlo and Rhi

i when
D = Dhi, for i ∈ {1, 2, 3, 4}. Let w = (S2, ρ2) and let w̄lo be
the non-washout stable steady state for Dlo. Let wlo(t;w0)
and whi(t;w0) be the trajectories starting at w0 when



D = Dlo and D = Dhi, respectively. Suppose that initially
D = Dlo and w0 is such that w(t;w0)→ w̄lo. We follow this
trajectory for some time T1 until w1 = wlo(T1, w0) ∈ Rhi

1 ,
close to w̄lo. Now we switch to D = Dhi. The trajectory
whi(t;w1) will go northeast (↗ on Rhi

1 ), cross the curve
ρ2 = N2(S2;Dhi) and then follow a path southeast (↘ on
Rhi

2 ) on its way to the washout of methanogens. We follow
this trajectory for some time T2 so that w2 = whi(T2;w1) ∈
(Rlo

3 ∪ Rlo
1 ) ∩ Rlo. At this point we switch to Dlo and the

trajectory wlo(t;w2) will eventually go northwest (↖ on
Rlo

3 ), and then cross ρ2 = N2(S2;Dlo) on its way to w̄lo,
when it will eventually go south (↙ on Rlo

4 , or eventually
↘ on Rlo

2 ). We follow this trajectory for a time T3 until
w3 = wlo(T3;w2) ∈ Rhi

1 . We then again change to D = Dhi

and repeat.

The above discussion implies that by alternating D be-
tween Dlo and Dhi, with adequate times on each condition,
the trajectory for ρ2(t) will reach local maxima periodi-
cally. The timely detection of these maxima could be used
to oscillate around the maximum achievable value for ρ2.

Notice that the condition w̄lo ∈ Rhi
1 is met if ρ̄lo

2 <
N2(S̄lo

2 ;Dhi). Considering that µ2(S̄lo
2 )−kd2 = αDlo, using

(19), (33), (35) and simplifying,

Sm2 − S̄lo
2

α
>
µ2(S̄lo

2 )

µ′2(S̄lo
2 )

=

S̄lo
2

S∗
2

+ β
(
S̄lo
2

S∗
2
− 1
)2

β
S∗
2

(
S∗
2

S̄lo
2

− S̄lo
2

S∗
2

) . (36)

It is possible to show that this condition is always satisfied
for S̄lo

2 .

Figure 3 shows the same phase plane for Dlo and Dhi, but
in orange lines the nullclines of the opposite condition are
also shown. The steady state w̄lo is shown as a green circle,
and the optimum steady state w̄opt is shown as a magenta
circle. Notice that w̄lo ∈ Rhi

1 as expected.

Fig. 3. Trajectories in the phase plane (S2, ρ2) for an
alternating operation between Dlo (left) and Dhi

(right).

In the figure, shown as a red curve is a trajectory that
starts with an initial condition w0 ∈ Rlo

1 and Dlo for 10 h,
and then alternates between Dhi and Dlo with Thi = 1.5 h
and Tlo = 5 h. Notice that indeed, Thi is such that the
trajectory ends in Rhi

3 , and that Tlo is such that the
corresponding trajectory ends close to w̄lo. It is noticeable
that indeed local maxima in ρ2(t) occur, and they happen

very near ρ̄opt
2 .

The advantage of this qualitative analysis is that it is valid
even if Sm2 is (slowly) time-varying, which indeed happens
since it depends on ρ1(t), cf. (31). The nullclines will then
“move” as the trajectory evolves; it is to be discussed

how this affects the qualitative analysis. As previously
mentioned, for the 2D system (S1, ρ1) of (27)–(28), we
can follow a similar procedure for its analysis. Consider
thus the additional parameters of Table 2.

Table 2. Parameters for the (S1, ρ1) system.

Parameter Value Parameter Value

µ∗1 0.82 h−1 K∗
S1 10 mg L−1

Sm
1 100 mg L−1 kd1 0.06 h−1

k1 0.8 mg mg−1 k2 1.2 mg mg−1

For the same conditions of transitions between Dlo and
Dhi as above, figure 4 shows the trajectories in red.

Fig. 4. Trajectories in the phase plane (S1, ρ1) for an
alternating operation between Dlo (left) and Dhi

(right).

It can be appreciated that ρ1(t) is bounded between
approximately 42.8 and 53.1 mg L−1h−1. Furthermore,
ρ1(t) increases when D = Dhi, and decreases when D =
Dlo, but since Sm2 = Sin2 +k2

D ρ1(t), this implies that Sm2 will

decrease to values close to Sin2 + 116.5 when D = Dhi and
increase to Sin2 +135.5 whenD = Dlo . Thus, the trajectory
whi(t, w1) will start with Sm2 high and end with Sm2 low,
implying that the maximum in ρ2 will be reached faster.
On the other hand, since Sm2 (t) increases when D = Dlo,
the trajectory wlo(t;w2) will start with Sm2 low and end
with Sm2 high, risking that the maximum of ρ2(t) may not
be observed.

6. SIMULATIONS

To check that indeed this controller proposal could work,
we now simulate the complete system with the same ki-
netic parameters, but considering the additional parame-
ters on Table 3. In this case, we can find that Dcr2 = 0.446
and Dopt ≈ 0.406. We simulate then first for 10 h with
Dlo = 0.3 and then alternate with Dhi = 0.55 h−1 for
Thi = 2.5 h with Dlo = 0.3 h−1 for Tlo = 5 h. The results
are shown in Figure 5.

Table 3. Additional parameters for simulation.

Parameter Value Parameter Value

khyd 0.5 h−1 Xin
T 20 mg L−1

Sin
1 85 mg L−1 Sin

2 75 mg L−1

Dlo 0.3 h−1 Dhi 0.55 h−1

The simulation shows the expected behavior. The third
graph (from left to right) of the bottom row shows the
evolution of ρ2(t), which is proportional to the output
qm(t). It is clear that maxima are reached during the



Fig. 5. Simulation of the complete model alternating with
Thi = 2.5, Dhi = 0.55 (red) and Tlo = 5, Dlo = 0.3
(blue) after an initial period with Dlo (green).

transients, both when D changes from Dlo to Dhi (red
curves) and viceversa (blue curves). The fourth graph is
the evolution of (S2, ρ2) in the state space, showing the
occurrence of maxima, too.

However, this behavior does not always happen. For exam-
ple, if now Sin2 = 25 mg L−1, then Dopt ≈ 0.372 h−1 and in

fact ρ̄opt
2 ≈ 37.88. Figure 6 shows a simulation alternating

with Dhi = 0.55 h−1 for Thi = 1 h and Dlo = 0.35 h−1 for
Tlo = 6 h . Although with Dlo we do see the peaks, with
Dhi we no longer see them. Nevertheless, notice that ρ2(t)

peaks at values even higher than ρ̄opt
2 .

Fig. 6. Simulation of the model alternating with Thi = 1,
Dhi = 0.55 (red) and Tlo = 6, Dlo = 0.6 (blue) when
the VFA influent concentration is decreased.

7. CONCLUSIONS

For an anaerobic bioreactor model, which has proven
to be useful in predicting the dynamic behavior of this
type of systems, we propose to alternate between two
dilution rates to maximize the methane outflow rate. This
proposal is based on a detailed qualitative analysis of
the transient behavior of the state trajectories, especially
that of the measured output. It is shown that indeed,
when adequately alternating between dilution rates above
and below the optimal steady-state maximizing input, the
trajectory of the output signal (the methane flow rate)
reaches a temporary maximum. This observation can be
used to propose an output feedback maximizing controller,
and it is the subject of ongoing research.
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