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Abstract: Multi-rotor aerial vehicles, especially those of small size, are particularly susceptible
to external perturbations, such as wind gusts. In this regard, Active Disturbance Rejection
Control (ADRC) has been used successfully to reduce the effect of external perturbations for
this kind of vehicle. Yet, in this paper, it is shown through frequency domain analysis that
ADRC can be overly sensitive to sensor noise. Due to ADRC being based on state feedback
control, determining performance and robustness specifications in the frequency domain is
not straightforward. On the other hand, for output feedback control (OFC) there exists a
comprehensive theoretical framework which allows to manage these parameters. Therefore, in
this article a novel combination of classical OFC and ADRC is proposed. It is shown that
using the proposed scheme, the nominal (i.e. without perturbation) characteristics of the control
system can be defined exclusively by the OFC while the ADRC improves perturbation rejection.
A drawback is that the resulting sensor noise sensitivity is degraded. In order to improve this
parameter, the selection of proper observer gains for the ADRC observer and the use of a low-pass
filtering element within the controller structure are studied. Finally, time domain simulations
illustrate the effectivity of the proposed scheme.
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1. INTRODUCTION

Micro air vehicles (MAV) such as quad-rotors, have
become increasingly utilized in consumer and commer-
cial applications. Today, many different control strate-
gies have been successfully implemented, ranging from
Proportional-Integral-Derivative (PID) controllers to non-
linear methods such as sliding modes and backstepping
(Zulu and John (2016)). Even though complex strategies
have been successful, the prevalent control schemes are
based on PIDs due to their relative simplicity and easy
tuning. However, micro air vehicles are highly susceptible
to disturbances due to wind gusts and/or plant uncertain-
ties.

Active Disturbance Rejection Control (ADRC), intro-
duced by Han in 1995 as an alternative to using con-
ventional PID controllers, has been growing in popularity
in several applications (Tian and Gao (2007)). The main
advantage of ADRC is that it does not require an exact
process model to estimate and compensate for distur-
bances. It is based on an extended state observer which
models uncertainties and external perturbations as one
large lumped disturbance. ADRC tuning has been refined
and well documented, allowing a simpler implementation

(Chen et al. (2011)). Research has been conducted on
different aspects of ADRC, such as frequency response
analysis (Tian and Gao (2007)) of a linear representation
of ADRC. In this context, the use of ADRC for improv-
ing the performance of MAV subject to perturbations is
attractive, yet it has not been widely reported.

This aim of this study is to improve the disturbance
rejection properties of a MAV subject to both input dis-
turbances and sensor noise. In this sense, ADRC has been
shown to be sensitive to sensor noise, a characteristic which
is also confirmed here using frequency domain analysis.
Therefore, a novel combination of a output feedback con-
troller, designed using classical control theory, and ADRC
is proposed. The main characteristics of this new scheme
are presented. The resulting scheme provides a good com-
bination of input perturbation and sensor noise rejection.

2. QUAD-ROTOR MODEL

The MAV can be modeled using Newton-Euler equations
of motion and Fig. 1:

mV̇b +mωb × Vb = Fb (1)

Jω̇b + ωb × (Jωb) = Mb (2)
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Fig. 1. Quadrotor frame and motor configuration
(Gonzalez-Sanchez et al. (2013))

where Vb = [ u v w ]
T

and ωb = [ pb qb rb ]
T

are the
linear and angular velocity vectors, Fb is the external force
vector, M is the mass, J is the inertial moment matrix,
and Mb is the external moment vector. If the quad-rotor
body is assumed to be symmetrical, then:

J = diag(Iα, Iα, Iz) (3)

where Iα is the inertial mass along x and y axes, and Iz is
the inertial mass along the z axis. Considering the Euler

angles Ω = [ φ θ ψ ]
T

with a rotation sequence ψ − θ − φ
(yaw-pitch-roll):

ωb = RαΩ̇ (4)

where:

Rα
−1 =

[
1 sφtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ

]
,

Φ
Θ
Ψ

=
=
=

[φ
[0
[0

0
θ
0

0]T

0]T

ψ]T
(5)

sx = sin(x), cx = cos(x), tx = tan(x)

The thrust of the propeller can be approximated by:

Fi = kpVi
2 (6)

where V is the voltage applied to the motor and kp is
a constant that can be experimentally characterized for
each motor-propeller combination. Similarly, the reactive
moment can be expressed as:

Ti = kmVi
2 (7)

where km is a constant that can be that can be experi-
mentally characterized as well.

The induced forces and moments due to thrust (6) and
reactive moments (7) for an X type quadrotor are:

F bα = [ 0 0 Fz ]
T

M b
α = [ Tp Tq Tr ]

T (8)

where FzTpTq
Tr

 =

 −kp −kp −kp −kp
0 −`kp 0 `kp
`kp 0 −`kp 0
−km km −km km
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(9)

Combining (8) and (4), we obtain the following simplified
model (Bai et al. (2012)):

Fig. 2. Linear ADRC with complete state feedback

ϕ̈ = θ̇ψ̇

(
Iα − Iz
Iα

)
+

1

Iα
Tp

θ̈ = ϕ̇ψ̇

(
Iz − Iα
Iα

)
+

1

Iα
Tq

ψ̈ = ϕ̇θ̇

(
Iα − Iα
Iz

)
+

1

Iz
Tr

(10)

In (Gonzalez-Sanchez et al. (2013), Bai et al. (2012)), the
process for further simplifcation of the orientation model
is shown. This results in the following transfer matrix:

G(s) = diag

[
1

Iαs2
1

Iαs2
1

Izs2

]
(11)

In the following sections, this simplified model will be used
for the design of several control schemes.

3. ACTIVE DISTURBANCE REJECTION CONTROL

Implementation of a second order ADRC has already
been well studied (Herbst (2013), Chen et al. (2011),
Tian and Gao (2007)). The central idea is to use an
extended state observer (ESO) to estimate the internal
and external disturbances in real time. Original ADRC
has complex tuning parameters as well as nonlinear gains.
However, (Gao (2006)) implemented ADRC using a linear
observer, which simplified the implementation without
compromising its performance and robustness.

A basic presentation of linear ADRC, as proposed by (Gao
(2006)) is presented for a second-order system . A general
second-order plant is considered as:

ÿ = g(y, ẏ, w, t) + bu (12)

where y is the system output, u is the control signal, b is a
constant, and w represents external disturbances. ADRC
treats g(y, ẏ, w, t) as the generalized disturbance, which is
denoted as f(t). This generalized disturbance is estimated
using an ESO. If x1 = y, x2 = ẏ, x3 = f , the second-order
plant can be represented with a state space model as shown
below:

ẋ = Ax+Bu+ Ef
y = Cx

(13)

where:

A =

[
0 1 0
0 0 1
0 0 0

]
, B =

[
0
b
0

]
E =

[
0
0
1

]
(14)

and C = [ 1 0 0 ]. Using the classical Luenberger equations
for system (12), the ESO results in:

ż = Az +Bu+ L(x1 − z1)
ŷ = Cz

(15)



where the observer gain vector L is chosen so that all the
observer eigenvalues are located at −ω0 (Tian and Gao
(2007)).

L =
[

3ω0 3ω2
0 ω

3
0

]T
(16)

If the observer is well tuned, it can be assumed that z1, z2,
and z3 closely track y, ẏ, and f respectively. The control
law

u =
(u0 − z3)

b
(17)

reduces (12) to an approximated double integrator plant.

ÿ = f + u0 − z3 ≈ u0 (18)

The closed loop dynamics of (18) are then adjusted by
using the complete state feedback:

u0 = kp(r − z1) − kdz2 (19)

where kp and kd are controller gains.

The use of ADRC imparts good input perturbation rejec-
tion characteristics and when no perturbation is present,
the performance and robustness properties are the same
as a typical state-feedback control.

Notwithstanding the attractive input perturbation rejec-
tion properties of ADRC, in the following sections it will
be shown that the noise sensitivity of this scheme is high,
limiting the usefulness of this scheme.

3.1 Classical Linear Control

It is well known that classical linear control, in particular
if designed using frequency analysis tools, allows proper
assessment of the robustness and performance. For in-
stance, using the nominal system model (11), a set of linear
controllers was designed using Bode shaping techniques
for the pitch, roll, and yaw angles. The detailed design
procedure for pitch and roll angles are presented as an
example. The same procedure was utilized for the design
of the yaw angle controller.

Due to the symmetry of the vehicle, the pitch and roll
dynamics are similar, thus the same controller can be used
for both. Controller (20) was designed for pitch and roll of
the simplified model(11) considering the specifications in
Table.1 and Table.2.

Table 1. Control Design Specifications

Specification Proposed Control

Bandwidth 2-10 rad/s 5 rad/s

Phase Margin(Mp) >60 deg 78.6 deg

Gain Margin(Mg) >12dB -inf dB

Table 2. Air Vehicle Parameters

Inertia Iα .0049 kgm2

Inertia Iz .0088 kgm2

bα 204.0816

l .225 m

OFC(s) =
1.225(s+ 0.5)

(s+ 50)
(20)

The nominal robustness and performance properties can
be derived from the Bode plot shown in Fig. 3.

M
ag

n
it

u
d

e 
(d

B
)

-100

-50

0

50

100

10-2 10-1 100 101 102 103

P
h

as
e 

(d
eg

)

-180

-150

-120

-90

Frequency  (rad/s)

Fig. 3. Open loop Bode Plot pitch and roll dynamics using
controller (20)

Designing a classical controller guarantees proper perfor-
mance and robustness. However, it will be shown that
this controller is highly sensitive to input disturbances.
One method to improve this problem is to increase the
controller gain at lower frequencies. Nonetheless, this
would also introduce phase lag, which can compromise
the robustness and transient responses (Lurie and Enright
(2000)).

In the following sections a novel control scheme that
combines the input disturbance properties of linear ADRC
and the performance and robustness of classical control is
presented.

3.2 A modified ADRC with classical control example

Fig. 4. Scheme combining OFC and ADRC

In contrast to the implementation of ADRC, only the
estimation of the disturbance will be used in conjunction
with a nominal control (OFC(s)) designed using frequency
domain specifications. That is, the estimated lumped dis-
turbance, z3, will be used in conjunction with the lin-
ear controller described in (20). The resulting scheme is
shown in Fig. 4 and will be denoted as OFC+ADRC. The
quadrotor model (11) is first expressed as a state space
model. In this configuration, it is typical that two output
variables are measured using an inertial measurement unit
(IMU) to estimate angular positions. In particular, the
accelerometer of an IMU are used to reconstruct angular
position, while the gyroscopes measure angular velocities.
Therefore, for the ADRC observer both outputs are used,
while the linear controller OFC only utilizes angular po-
sition feedback.(

ẋ1(t)
ẋ2(t)
ẋ3(t)

)
= A ·

(
x1(t)
x2(t)
x3(t)

)
+B · u(t) + E · ḟ(t)

y(t) = C ·

(
x1(t)
x2(t)
x3(t)

) (21)



where

A =

(
0 1 0
0 0 1
0 0 0

)
, B =

(
0
b
0

)
, E =

(
0
0
1

)
C =

(
1 0 0
0 1 0

) (22)

The resulting ESO is:

·
X̂ = (A− LC)X̂ + [B L ]

[
u(t)
y(t)
ẏ(t)

]
(23)

where L =

[
l11 l12
l21 l22
l31 l32

]
Summarily, the state space matrices of the ADRC observer
yield:

AObs =

[−l11 1 − l12 0
−l21 −l22 1
−l31 −l32 0

]
, BObs =

[
0 l11 l12
b l21 l22
0 l31 l32

]
Cobs = [ 0 0 1 ]

(24)

Fig. 5. Linear Control and ADRC

To analyze the effects of the coupling of ADRC with
the linear controller, the Laplace transform of the state
observer was taken. That is:

z3(s) = CObs(sI −AObs)BObs[ u(s) y(s) ẏ(s) ]
T

= [Obs1 Obs2 Obs3 ] [ u(s) y(s) ẏ(s) ]
T (25)

Making the proper block algebra simplifications, the final
proposed control scheme is shown in Fig. 5, where:

Obs1 = −
b
l32

(s+ (l31 + l11l32 − l21l31)l22)

A1

Obs2 =
s
(
s+ l22l31−l21l32

l31

)
A1

Obs3 =
l32s

2 + (l11l32 − l12l31)s+ (l21l32 − l22l31)

A1

(26)

andA1 = s3 + (l11 + l22)s2 + (l21 + l32 + l11l22 + −l12l21)s
+(l31 + l11l32 − l12l31).

As follows it will be shown that in nominal conditions;
without perturbation, the resulting closed loop response
depends only on the linear controller (OFC(s)). This im-
plies that the ADRC component does not affect the per-
formance and robustness provided by the linear controller.
According to Fig. 4, in nominal conditions, the resulting
transfer fuction which models the closed loop response is
given by:

y(s)

r(s)
=

OFC(s)Obsloop(s)

1 +OFC(s)Obsloop(s)
(27)

where

Obsloop(s) =

G(s)
1+Obs1

1 +
(
G(s)(Obs2+Obs3)

1+Obs1

)
Substituting eq. (26) into (27) it turns out that:

y(s)

r(s)
=

OFC(s)G(s)

1 + (OFC(s)G(s))
(28)

which is equal to the closed loop transfer function if only
the OFC controller is considered.

This is a key result as it shows that the effect of the ADRC
observer is separable from any linear feedback controller in
closed loop if only the perturbation rejection component
of ADRC is used.

4. DISTURBANCE AND NOISE ANALYSIS

In this section, the main noise and disturbance rejection
features of the OFC scheme, described in section 3.1, and
the OFC+ADRC scheme, derived in section 3.2, will be
compared in the frequency domain.

4.1 Pole Placement Analysis

In (Tian and Gao (2007)), a simple method for selecting
the ADRC observer gains is presented. This method can
be used when the measured variable is a scalar signal.
However, due to the air vehicle system having a two
dimensional measurement vector, the method proposed
in (Tian and Gao (2007)) cannot be applied directly.
Therefore, a pole placement algorithm was used to set the
poles at different frequencies, as shown in Fig.6 and Fig.7.
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Fig. 6. Input Disturbance Sensitivity of OFC(s)G(s) and
(OFC +ADRC)G(s)

Fig. 6 shows the sensitivity to input disturbances of the
OFC and OFC +ADRC control schemes. It is clear that
the OFC +ADRC combination greatly improves the sen-
sitivity to low frequency input disturbances compared to
the standalone OFC scheme. In addition, it can be seen
that as the observer poles increase the input disturbance
sensitivity decreases. This result is in line with the ex-
pected behavior of the disturbance observer: increasing
the observer performance improves the input disturbance
rejection.

Fig. 7 shows the sensitivity to sensor noise of the OFC and
OFC +ADRC control schemes. In contrast to the input
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perturbation rejection, the system is more susceptible to
high frequency sensor noise as the observer poles frequency
increases. This higher sensitivity is especially detrimental
as IMU measurements contain a significant amount of
high frequency noise. Lowering ADRC observer pole values
reduces noise sensitivity; however, the attractive input
disturbance properties are negatively impacted.

4.2 Low Pass Filter-ADRC Combination

The previous results suggest that the selection of the
ADRC observer gains should be made considering a com-
promise between sensor noise and input perturbation re-
jection. In current literature, there are several methods
which could be potentially used for this purpose, such as
optimal control theory. In the following section, a simple
approach for adjusting the resulting sensor noise sensitiv-
ity is presented. This method is based on introducing a low
pass filter within the ADRC transfer functions in order to
cutoff the bandwidth of the observer. The resulting scheme
is shown in Fig. 8.

Fig. 8. OFC + ADRC with Low Pass Filter
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Fig. 9. Sensor Noise Sensitivity of OFC(s)G(s) and
(OFC +ADRC + LPF )G(s)

Fig. 9 shows the sensitivity to sensor noise of the OFC
scheme compared to that of the OFC+ADRC using the
proposed LPF. The filter cutoff frequencies considered are:
ωc = [1, 10, 15, 30]rad/s. From this figure, it is clear that
as the LPF cutoff frequency decreases, the sensor noise
sensitivity improves.
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Fig. 10. Input Disturbance Sensitivity of OFC and
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On the other hand, the frequency of the LPF also affects
the input disturbance rejection, as shown in Fig. 9. As
the LPF cutoff frequency decreases, the input disturbance
rejection deteriorates. Nonetheless, in all cases the input
disturbance rejection at lower frequencies is significantly
better than that of the OFC scheme.

An important observation from Figs. 9 and 10 is that for
low ωc values, the filter begins to interfere with the dynam-
ics of OFC(s)G(s), introducing a phase lag in the open
loop transfer function, causing a large unwanted peak.
This is also indicative of a reduced level of robustness.
Therefore, a LPF cutoff frequency higher than the nominal
open loop bandwidth is indicated in order to avoid this
problem.

From Figs. 10 and 9, it can be concluded that adding
a low pass filter adds a new parameter for tuning the
level of ADRC disturbance rejection and sensor noise
sensitivity, simplifying the task of achieving the required
specifications. Although a similar result can be reached
by proper tunning of the ADRC observer gains, the intro-
duction of the LPF has a clear and unique effect,making
it simpler to adjust. Finally, it should be noted that the
proposed scheme allows achieving good levels of sensor
noise and input perturbation rejection for high and low
frequency bands respectively. However, the cross-over fre-
quency band is still vulnerable to these perturbations. This
is a well known limitation which applies to all control
schemes (Lurie and Enright (2000)).

5. TIME DOMAIN SIMULATION EXAMPLES

A quadrotor simulation restricted to the the pitching
moment was implemented to compare the different control
schemes described in the previous section. The ADRC
parameters used in the simulation are shown in Table. 3.

Table 3. Simulation Parameters

ADRC Observer Poles [100, 101, 102]

LPF ωc 15 rad/s
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Fig. 11. Comparison of step response of the closed
loop system with OFC, OFC+ADRC,and OFC +
ADRC + LPF with low frequency input disturbances

Fig. 11 shows the step response of the three con-
trol schemes subjected to a pseudo-random low fre-
quency input noise (< 0.1rad/s). It is clear that both
OFC +ADRCand OFC +ADRC + LPF are effective in
rejecting the low frequency input disturbances. In contrast,
the OFC fails in this regard.
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Fig. 12. Comparison of step response of the closed
loop system with OFC, OFC+ADRC,and OFC +
ADRC + LPF with high frequency sensor noise.

Fig. 12 shows the step response of the three control
schemes subjected to high frequency pseudo-random sen-
sor noise (> 100rad/s). As previously discussed, ADRC
induces an increase in sensor noise sensitivity, which can
be clearly seen. However, the addition of the LPF in
the OFC +ADRC + LPF scheme greatly reduces this
problem.

The simulations confirm that combining ADRC with OFC
greatly improves the disturbance rejection properties of
the resulting scheme, but this also exacerbates sensor
noise. This problem can be ameliorated by adding a LPF
within the ADRC structure, reducing sensor noise at a
minimal cost of disturbance rejection performance.

6. CONCLUSION

In this article, the perturbation rejection and sensor noise
characteristics of ADRC are analyzed in the frequency
domain. It can be concluded that ADRC schemes can be
overly sensitive to sensor noise, but in turn provide good
perturbation rejection properties. On the other hand, it

is well known that classical control design allows a clear
measurement of performance and robustness properties.
This motivates the combination of an output feedback
controller, designed using classical control elements, with
an ADRC observer, intended to improve the input pertur-
bation rejection. The proposed ADRC+OFC combination
is shown to be separable if no input perturbation is present.
Therefore, the nominal performance and robustness char-
acteristics are completely defined by the OFC. However,
if input perturbations are present, the ADRC observer is
effective in rejecting said perturbations. A further analysis
of the effects of sensor noise shows that, due to the ADRC
observer, the sensor noise sensitivity is deteriorated. The
study shows that this issue can be partially rectified by
the proper selection of the ADRC observer gains. However,
this problem has not been properly reported in the current
literature. A simple proposal to address this problem is
presented by introducing a low pass filter in key elements
of the ADRC observer. The results show that this yields
a control scheme easy to adjust using frequency domain
elements. Finally, the results are validated in the time
domain through digital simulations. The results encourage
further study regarding the optimization of the ARDC
observer gain and LPF tunning as well as experimental
validation.
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