
Dynamic model of an omnidirectional vehicle
for an unified task-space control in mobile

manipulators

J. Obregon-Flores A. Morales-Díaz

Centro de Investigación y de Estudios Avanzados del Instituto
Politécnico Nacional Unidad Saltillo
Ramos Arizpe, Coah. 25900, México

Phone number:+52-844-4389600 Ext. 8500
e-mail: {jonathan.obregon,america.morales}@cinvestav.mx.

Abstract.
A common strategy to control an omnidirectional mobile manipulator is considering the mobile
part as an extension of the generalized coordinates of the robot. Therefore, it must be assumed
that the robot’s vehicle can move in those coordinates, regardless of the configuration of
its wheels. To achieve that, a relationship between the wheels motion and vehicle’s motion
must be established. Fortunately, must closed-architecture mobile robots already establish this
relationship, unlike experimental open-architecture mobile robots. This relationship has been
issued by several contributions, for their specific case of study, with each of them showing
a particular mapping operator that relates the velocities and forces between the wheels and
the vehicle. However, it is rather counterintuitive to know how the mapping operators were
obtained for a particular case, whose shape depends on the vehicle’s parameters and wheels
configuration. In this work, we introduce a methodology to obtain a force-mapping operator
for an omnidirectional vehicle, which was useful to simulate a task-space control at torque level
for a mobile operator, and to implement a torque-level tracking control for a Kuka-Youbot’s
omnidirectional base.
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1. INTRODUCTION

The operational area of mobile manipulators is not re-
stricted by a fixed inertial base, so their redundancy
is generally greater than inertial robots. This can be
exploited in order to accomplish a set of simultaneous
tasks; such as maintaining the manipulator’s end-effector
lifting an object in a desired position and orientation while
the vehicle moves through a given trajectory. Controlling
a mobile manipulator as a whole system requires that
the motion coordinates of the vehicle are the same as
those of the manipulator arm, thus requiring the vehicle’s
wheels to move in a synchronized manner to achieve
such a desired motion. This can be achieved by finding
a relationship between velocities or forces in the wheels
and in the vehicle, which depends on the kind of wheels
and their position on the vehicle. Such relationship can
be described by a mapping operator for velocities and
forces. Therefore, the whole robot can be modeled and
controlled. Some related works have emerged proposing
unified kinematics models for mobile manipulators, such
as Sharma et al. (2012), which deploys an inverse kinemat-
ics solver that generates all possible solutions to determine
the required base and joint positions for a desired end-
effector pose. In Mirelez et al. (2016) the unified kinematic

model of a mobile manipulator is derived considering
the DOF of the omnidirectional vehicle as a part of the
kinematic chain, and using a quaternion parametrization
to represent the end-effector’s attitude. Also, the unified
dynamics of the mobile manipulator is worth being con-
sidered for path planning, motion optimization, feedback
control algorithm design, and hierarchies for dynamically
feasible tasks (Estopier et al. (2014)). Related works such
as Changwu Qiu et al. (2008), propose a methodology to
obtain the dynamic model of an omnidirectional dual arm
mobile manipulator using spatial notation derived from
the Lie group theory. However, the control of the unified
system is not discussed. In Watanabe et al. (2000), while
the model and control of a three-wheeled omnidirectional
mobile manipulator is derived, the dynamic model of the
vehicle is not deeply discussed, nor the methodology to
obtain the operator they used to map between the wheels
torques to the force quantities that belong to the same
space where the vehicle moves. Some of the aforemen-
tioned authors have contributed to the kinematic and
dynamic modeling of mobile manipulators for multiple
applications. Even though, the methodology to obtain the
force mapping operator is not discussed, which is always
different depending on the wheel’s configuration of the
robot.
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In this work we propose a methodology to obtain a force
mapping operator from the dynamic model of a four-
wheeled omnidirectional vehicle, which can be assumed
as a rigid body subjected to exogenous wrenches with
a holonomic constraint represented by a horizontal flat
floor. We adopted spatial notation and operators obtained
from Lie algebra, simplifying the notation of equations of
motion and mapping operators.
This operator was necessary for a torque-level control of
the omnidirectional vehicle, such that it was possible to
control the mobile manipulator a whole system.
This paper is organized as follows. Section 2 formulates
the dynamic model of the omnidirectional vehicle, from
which the force-mapping operator was derived. In Section
3 we use the force mapping operator to include the wheels
torques in the general equation of motion of the mobile
manipulator. In 4 the task-space control framework is
briefly recalled, and simulated in Section 5. Experimental
results are shown in Section 6, and concluding remarks in
Section 7.

2. DYNAMIC MODEL OF THE
OMNIDIRECTIONAL VEHICLE

Let assign frames to the wheels Σwi and to the vehicle’s
center of mass Σb as in Figure (1)

Figure 1. Vehicle’s frames.

Therefore, by following Figure (1), we define dwib =
[d ` h]T as the distance between Σwi and Σb, and their
orientation change is given by the rotation matrices Rri

b
for i = 1 . . . w, where w denotes the number of wheels.
The resulting wrench, in reference to the vehicle’s frame,
F ∈ R6 is the addition of each wrench produced by
the wheels Fwi ∈ R6 for i = 1 . . . w. Therefore, in
order to represent Fwi with respect to Σb, coordinates
transformation operators are needed, which are defined in
Park et al. (1995) as the linear mapping between the Lie
group elements X ∈ SE(3), and the elements of its Lie
algebra ν ∈ se(3), by the adjoint representation AdX(ν),
where X is composed by the ordered pair (R,d), with
R ∈ SO(3) and d ∈ R3, where the algebra of the
elements of SO(3), denoted by so(3), is defined by a skew
symmetric matrix S(ω), which can also be regarded as a
vector ω ∈ R3. On the other hand, the elements in se(3)
are denoted by the ordered pair (S(ω),v), which can also

be regarded as a vector ν = [ω v]T ∈ R6 describing
the twist of a body. Therefore the adjoint map of the
SE(3) element X = (R,d), acting on its se(3) element
ν = (ω, v) is given by AdX(ν) = XνX−1, i.e.,

AdX(ν) = (Rω,d×R(ω + v)), (1)
which can be expressed as a 6× 6 matrix

AdX(ν) =
[

R 0
S(d)RT R

] [
ω
v

]
, (2)

which can also be written as follows

AdX(ν)−1 =
[
RT −RTS(d)
0 RT

] [
v
ω

]
. (3)

A dual operator Ad∗
X acting on the elements of the

cotangent space of SE(3), denoted by se∗(3), has a matrix
representation given by the transpose of Ad−1

X , for the
elements f = (f,n) ∈ se∗(3), representing force and
moment vectors, which constitutes the wrench of a body.
This operator is defined as

Ad∗
X(f) =

[
RT 0

−RTS(d) RT

] [
f
n

]
. (4)

Defining Ad−1
X , G ∈ R(6×6) and Ad∗

X , GT ∈ R(6×6),
the total input wrench of the vehicle is now given as:

F =
w∑
i=1

GT
i Fwi. (5)

The wrench in each wheel is denoted by Fwi =
[fxi, fyi, fzi, τxi, τyi, τzi]T , and is defined according to Fig-
ure (2), where, for each wheel to move along x, the

(a) Forces along x (b) Forces along y

(c) Moment about z

Figure 2. Vehicle’s forces distribution

force is fxi = 1
r τmi. Meanwhile, motion along y, im-

plies fyi = −τm1−τm2+τm3+τm4
4r , for i = 1, 3 and fyi =

τm1+τm2−τm3−τm4
4r for i = 2, 4. The rollers of the mecanum

wheels permits lateral displacement but its effects are
neglected in this work, because the relationship between
torques and wheels radius, and their individual rota-
tion combination, is what mostly describes the resulting
wrench of each wheel. The contact forces of each wheel



fzi are normal to the floor plane and keeps the base at
floor level. The wheels are fixed on the base such that
their orientation does not change, then τxi = τzi = 0.
The torque occurring at τyi that yields fxi is what rotates
the wheels, but their frame is fixed and does not rotate
because of the vehicle constraint, therefore τyi = 0. So,
Fwi is denoted as follows:
Fwi =

[ 1
r τmi,

−τm1−τm2+τm3+τm4
4r , fzi, 0, 0, 0

]T
, (6)

for i = 1, 3,
Fwi =

[ 1
r τmi,

τm1+τm2−τm3−τm4
4r , fzi, 0, 0, 0

]T
, (7)

for i = 2, 4.
We can group the exogenous motor torques in vectors
according to how they produce motion in a certain gen-
eralized coordinate direction

τa =

τm1
τm2
τm3
τm4

 , τb = 1
4

−τm1 − τm2 + τm3 + τm4
τm1 + τm2 − τm3 − τm4
−τm1 − τm2 + τm3 + τm4
τm1 + τm2 − τm3 − τm4

 ,
(8)

τc = [fz1 fz2 fz3 fz4]T .
with τa and τb containing torques that produce motion
along the x-axis and y-axis respectively, τc contains the
forces spanning at the contact point of the wheels.
From (6), (7) and considering (8), we can relate how
torques produce motion in a certain generalized coordi-
nate direction

fx|τi
=
[ 1
r 0 0 0 0 0

]T
τai = Λxτai, (9)

fy|τi
=
[
0 1
r 0 0 0 0

]T
τbi = Λyτbi, (10)

fz|τi
= [0 0 1 0 0 0]T τci = Λzτci, (11)

for i = 1 . . . w.
Considering equation (5), torque-to-wrench mapping op-
erators for each of the torque input vectors τa, τb, τc, can
be derived as follows:

aiτai = GT
i Λxτai,

biτbi = GT
i Λyτbi, (12)

ciτci = GT
i Λzτci,

for i = 1 . . . w.
At this point, we define the operators A, B, C ∈ R(6×w),
such that we rewrite (12) as follows:

Aτa = [a1 a2 a3 a4] τa, (13)
Bτb = [b1 b2 b3 b4] τb, (14)
Cτc = [c1 c2 c3 c4] τc, (15)

Therefore the total wrench of the vehicle can also be
described as:

F = Aτa +Bτb +Cτc, (16)
where A and B, map the exogenous torques from the
motors to a wrench of generalized forces of the mobile
base. After a few operations and simplifications, equation
(16) can be written as:

F = Jτm +Cτc, (17)

F = Fm + Fc, (18)
with τm = τa, and J ∈ R(6×w) is a matrix of torques
distribution that computes the input wrench Fm that
directly spans from exogenous torque inputs. On the other
hand C is the operator that maps the exogenous re-
strictive forces τc to a restrictive wrench Fc constraining
the motion of the vehicle. The rank of C represents the
dimension of constrained motions of the vehicle. Then,
the rank of a null-space projector of C, denoted by Nc

represents the dimension of admissible motion of a body.
Hence ρ(Nc) = m − r, with m = 6 and r ≤ 6, where
if r = 0 the body is free to move in the space, and if
r = 6 the body is fully constrained and cannot move.
The restriction condition, in terms of Power transmission,
establishes that for all restricted coordinate i, Fiνi = 0,
hence νi = ν̇i = 0. We can write a motion restriction
expression by using the operator C to map the constraint
velocities and accelerations,

vc = CTν = 0, (19)

v̇c = CT ν̇ + ĊT
ν = 0. (20)

The restriction is time involutive due to the fact that
it is holonomic, therefore Ċ = 0. The vector ν is the
twist of the vehicle, and vc, v̇c,∈ Rw are respectively the
velocities and accelerations of the wheels constrained by
the floor. On the other hand, we can find that

νc = Cvc = [0 0 νz ωx ωy 0]T , (21)
with νc standing for the constraint twist.
We can describe the dynamics of a rigid body with its
equation of motion

Mv̇ + h(θ, ν) = F , (22)
with M representing the spatial inertia matrix of a rigid
body, and h(θ, ν) = Cc(θ, ν)ν + g(θ) containing the
centrifugal forces, the effects of Coriolis, and gravity
wrench. By substituting (17) in (22), we express the model
of a rigid body as that of the vehicle.

Mν̇ + h(θ, ν) = Jτm +Cτ c. (23)
To describe the dynamic model of the vehicle together
with its restriction, we need to consider the accelera-
tion constraint described by the second order kinematic
constraint from equation (20). Both equations can be
described in matrix form as follows:[

Mν̇ −Cτ c
−CT ν̇

]
=
[
Jτm − h(θ, ν)

Ċ
T
ν

]
[
M −C
−CT 0

] [
ν̇
τc

]
=
[
Jτm − h(θ, ν)

Ċ
T
ν

]
, (24)

where, in order to solve for [ν̇ τc]T we must invert the
left part of equation (24), which is a square block matrix
and can be inverted using Schur complements and some
properties of square block matrices. Leading to:[

M −C
−CT 0

]−1
= (25)[

M−1 −M−1C
[
CTM−1C

]−1
CTM−1 −M−1C

[
CTM−1C

]−1

−
[
CTM−1C

]−1
CTM−1 −

[
CTM−1C

]−1

]
,



where Mc
−1 =

[
CTM−1C

]−1
and the off diagonal

elements of the matrix are the M -weighted left pseudo-
inverse of C and its transpose:

C+
M = Mc

−1CTM−1 ∈ R(w×6), (26)

C] =
[
C+
M

]T
= M−1CM−1

c ∈ R(6×w), (27)

where C+
MC = I and CTC] = I. Therefore a null-space

projector of C projecting the residual constrained motion
dynamics into admissible motion, takes its form as:

Nc = I −CC+
M ∈ R(6×6), (28)

fulfilling bothNcC = 0 andC+
MNc = 0. Then the matrix

of (25) can be simplified as:[
M −C
−CT 0

]−1
=
[
NT
c M

−1 −C]
−C+

M −Mc
−1

]
. (29)

Now, the solution for [ν̇ τc]T from equation (24) can be
written as:

ν̇ =NT
c M

−1 (Jτm − h(θ, ν)) , (30)
τc =−C+

M (Jτm − h(θ,ν)) , (31)
From (30) we can solve for τm which is the active force
input vector of this system:

Mν̇ =NT
c (Jτm − h(θ, ν)) ,

NT
c Jτm =Mν̇ +NT

c h(θ, ν),
where it follows that:

Jb ,N
T
c J ∈ R(6×w), (32)

is the operator that distributes the wheels torques to
a constrained wrench of generalized coordinates for the
floor-constrained vehicle: F = Jbτm. Continuing solving
for τm

Jbτm = Mν̇ +NT
c h(θ, ν), (33)

τm = J+
b (Mν̇ +NT

c h(θ, ν)), (34)
we conversely find that J+

b maps the exogenous gener-
alized wrench to wheels torques. If solving equation (33)
for ν̇ it is possible to know the generalized output of the
system:

ν̇ = M−1(Jbτm −NT
c h(θ, ν)), (35)

3. DYNAMIC MODEL OF THE MOBILE
MANIPULATOR

The direct kinematics of the mobile manipulator are
obtained as in Mirelez et al. (2016) also with quaternion
parametrization for the end-effector pose. The direct
dynamics of the mobile manipulator arm of 8 DOF are
derived using spatial notation and a recursive Newton-
Euler algorithm (Featherstone et al. (2000)), leading to:

H(q)q̈ + h(q, q̇) +Dq̇ = τ , (36)
where τ = [fb τq]T ∈ Rn are the generalized forces of the
mobile manipulator, which are computed as:[

fb
τq

]
=
[
Jb 0
0 I

] [
τm
τq

]
(37)

where n = dim(cs), fb ∈ R(m−r) and τq ∈ R(n−(m−r)),
denoting the generalized forces of the vehicle and ma-
nipulator respectively. Jb ∈ R((m−r)×w) is full rank, The
generalized positions, velocities and accelerations are re-
spectively described by q, q̇ and q̈. Where q ∈ cs with
cs = SE(2) × T(n−(m−r)). H ∈ R(n×n) is the inertia
matrix, which is symmetric and positive definite, h ∈ Rn
is the vector of Coriolis, centrifugal forces and gravity,
D ∈ R(n×n) is a diagonal matrix of viscous friction
coefficients.

4. TASK SPACE CONTROL IN TORQUE MODE

In order to control the position and velocity of the end-
effector spatial coordinates, we must define its pose x as
a function of the generalized coordinates of the robot

x = f(q), (38)
where x = [p θ], with p = [x y z] ∈ R3 representing the
end effector position, and θ = [Q0 Q1 Q2 Q3] ∈ S3 the
end-effector attitude with quaternion parametrization.
The pose time derivative is defined as:

ẋ = Ja(q)q̇, (39)
where Ja(q) is the analytical Jacobian matrix.
A task is defined as:

e = x− xd, (40)
which if twice differentiated, it takes the following form

ë = Jq̈ + J̇ q̇ − ẍd. (41)
We can relate equation (41) with the dynamics of the
mobile manipulator by solving for q̈ in equation (36),
yielding:

ë = JH−1(τ − h) + J̇ q̇. (42)
Defining Q = JH−1, µ = Qh− J̇ q̇ and solving (42) for
τ , yields:

τ = Q]H(ë+ µ), (43)
where Q]H is a left pseudo-inverse of Q weighted by
H, τ is the control input that contains the generalized
forces/torques of the robot, such as the vehicle’s wrench
that is mapped by J+

b to the required wheels torques, ë
is the second order reference nominal control in the task
space and defined as:

ë = −Kpe−Kvė+ ẍd, (44)
where Kp and Kv are diagonal constant gain matrices
defining an exponential convergence of the error.

5. SIMULATIONS

Simulations of a computed torque controller for the dy-
namic model of an omnidirectional mobile manipulator
of 8 degrees-of-freedom, shows the torque requirements
of all robot actuators including the wheels, they are
computed from the control input of generalized forces
through the mapping operator Jb+, yielding torque in-
puts necessary to accomplish the given task. At t = 0,
the end-effector pose is x0 = [0.143 0 0.648 1 0 0 0].
The first stage of the task for the end-effector is a set-
point regulation, beginning at t ≥ 0 and specified by
xrd

=
[
prd

θrd

]
, where prd

= [5 3 0.4] meters and θrd
=



[0.7065 0 0.7065 0]. After t > 15, the second stage be-
comes a position tracking task for the end-effector: ptd =
[4 + 2 sin(t/2) 4 + sin(t) 0.4], ṗtd = [cos(t/2) cos(t) 0],
p̈td =

[
− sin(t/2)

2 − sin(t) 0
]
, keeping a new fixed orien-

tation: θtd = [1 0 0 0]. The deployed control law is given
in (43).
Figure (3a) shows the overall path generated by the
desired trajectory and the path followed by the robot
in the xy plane. The first stage ends when t > 15, at
this time, the end-effector have already reached xr. The
second stage begins with a sudden motion towards the
lemniscata path xt and starts following it. Figure (3b)
shows that the error asymptotically converges to zero in
the first stage, unlike in the second stage where the error
does not tend to zero, following the lemniscata with a
constant offset. This can be explained by virtue of the
end-effector desired pose whose coordinates to be tracked
are only xd and yd, while simultaneously keeping at zd
and θd. This may cause conflict when trying to reach
all coordinates simultaneously, which it is not feasible
in all cases. Figure (4) shows the generalized forces for
the robot’s vehicle given by the controller. It can be seen
large peaks of force magnitudes at t > ε when the error is
maximal, and at t > 15 the second stage begins, inducing
another peak of forces, indicating that the robot begins
to move again from a steady state. Figure (5) shows the
required torque inputs for the robot’s vehicle that are
equivalent to its generalized control input.

(a) Task path (b) Error

Figure 3. Task execution path.

6. EXPERIMENTS

Experiments were conducted on a Kuka Youbot with a
Mini-ITX board as on-board computer in the omnidirec-
tional vehicle, Figure (6). Processor: Intel AtomTM Dual
Core D510 (1M Cache, 2 x 1.66 GHz). RAM Memory:
2GB single-channel DDR2 667MHz. Graphics: Embedded
Gen3.5+ GFX Core, 400-MHz render clock frequency, up
to 224 MB shared memory. Hard-drive: 32GB SSD drive.
Its operating system is Ubuntu 12.04 LTS. Communi-
cation with an external computer is done via Ethernet
and/or Wi-fi. Communication with actuators and sensors
is via EtherCAT, The vehicle has four mecanum wheels

Figure 4. Generalized forces.

Figure 5. Motor torques.

Figure 6. Kuka-Youbot platform.

with radius of 47.5mm, overall length: 580mm, over-
all width: 380mm. Height: 140mm, Maximum velocity:
0.8m/s. Weight: 20Kg Power supply: 24 v DC. Playload:
20Kg, Motor controller boards: Trinamic TMCM series.
The encoders accomplish 400 Counts per Revolution in
all motors, from which position and velocity can be read.
Since the platform is able to receive torque signals, a
torque-mode controller is implemented for the Kuka-
Youbot vehicle alone, using a nominal PD controller
similar to (44), with proportional gain KP = 200 and
derivative gain KD = 150. Even though the manipulator
arm was mounted on the platform, only the vehicle was



controlled, such that we can verify that the torque inputs
in the generalized space are properly mapped to the
space of the wheels. The given task has three stages; The
first stage begins at t < 0, where the vehicle’s initial
coordinates are x(t) = [x y ψ] = [0 0 0], which must
follow a trajectory defined by xld = [2 sin(t/2) sin(t) 0],
ẋld = [cos(t/2) cos(t) 0], ẍld =

[
− sin(t/2)

2 − sin(t) 0
]
.

Then the second stage begins at t ≥ 25 s, where the
task becomes a regulation task, xrd

= [0 0 0], i.e., the
vehicle moves towards the origin. Finally, the third stage
begins as the vehicle is at the origin, where it must follow
another trajectory defined by xcd

= [cos(t) sin(t) 0],
ẋcd

= [− sin(t) cos(t) 0], ẍcd
= [− cos(t) − sin(t) 0].

Figure (7a) shows the reference path generated by the
three stages of the task, and the path generated by the
robot when following the reference path, displaying a
decently small error in the tracked coordinates x and
y, and a very small error in the regulated coordinate
ψ as seen in Figure (7b). Figures (8a) and (8b), show
respectively the torque control inputs for each wheel
required to achieve the task, which are computed from the
control input of generalized forces through the mapping
operator J+

b .

(a) Trajectory (b) Error

Figure 7. Kuka Youbot Vehicle’s trajectory.

(a) Wheels torques (b) Vehicle’s wrench

Figure 8. Kuka Youbot Vehicle’s forces.

7. CONCLUSIONS

In this work we have demonstrated the usefulness of
the force mapping operator obtained from the dynamic

model of the omnidirectional vehicle. This was proven suc-
cessfully through simulations and real experiments. Both
required the generalized control signals to be mapped
into torque signals for the wheels, which move the vehicle
as expected to fulfill the given tasks. This methodology
leads to a formulation that can be easily modified for
omnidirectional vehicles with a different amount and/or
arrangement of wheels, by just characterizing the wrench
of each individual wheel, transforming it from their local
frame to the vehicle’s frame, and finally adding them. This
would lead to a new suitable force mapping operator.
Proper gain values must be obtained through a conven-
tional tuning methodology, since the gains where tuned
empirically in both simulations and experiments. How-
ever, along the task execution, the vehicle is proven to
be stable through experiments with tracking tasks that
require considerable changes of motion.
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