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(e-mail: c.arturo.mtz@gmail.com).
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Abstract: In this paper a disturbed system with uncertain control coefficient and relative
degree one is stabilized using a controller defined by the integral of a discontinuous law based on
Twisting algorithm with extra terms that allows the rejection of the uncertainties produced
by the disturbance and unknown control coefficient. Also the proposed control law ensures
insensitivity to a kind of disturbances and finite time convergence to zero. The fact that the
control is only integral could help to chattering reduction against FOSM control law.
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1. INTRODUCTION

In the last years, sliding mode control algorithms have
become very important for control theory due to their
properties of robustness and finite time convergence of
the sliding variable.

Historically, the first sliding-mode controller was the sign
signal (FOSM) (Utkin , 2016) that can stabilize a system
with relative degree one sliding variable, nevertheless this
kind of control (discontinuous) produce high frequency
oscillation with bounded amplitude (called chattering).
An intuitive way to deal with this problem is to propose
continuous control laws, so thinking about that solution
without losing some properties of robustness and finite
time convergence, second order sliding-modes controllers
(2-SMC) was proposed.

For systems with relative degree two the Twisting al-
gorithm was introduced Emelyanov et. al. (1986) and
this controller is able to drive the sliding variable and
its derivative to zero in finite time (enforcing a second
order sliding-mode), and for systems with relative degree
one sliding variable the Super Twisting Algorithm (STA)
(Levant , 1993) can enforce a second order sliding-mode
too with a continuous control signal (reducing chatter-
ing), however STA has infinite gain a the origin that
remains being bad for chattering avoidance. For that rea-
son a control law defined by the integral of discontinuous
Twisting controller was proposed (Efimov et. al., 2011),
but this scheme only can stabilize the origin of the system

locally, also the Twisting controller requires the deriva-
tive of the sliding variable (disturbance estimation), so if
the control coefficient is known it’s more practical to use
a control law like STA or using the estimation in order to
compensate the disturbance on line (Davila et. al. , 2016)
despite the control signal produced by the Twisting as
filter is Lipschitz continuous respect time.

In recent works (Ventura and Fridman , 2016) had been
shown that under some assumptions a Lipschitz control
law could reduce the chattering produced by a sliding-
mode control against discontinuous one (FOSM) and laws
with infinite gain at the origin (STA).

Then in this paper we propose a control law based on
the integral of discontinuous signals (based on Twisting
as filter) that is continuous Lipschitz respect time at the
origin and could deal with unknown control coefficient
and disturbances for a system with sliding variable with
relative degree one.

Section 2 presents the problem statement and the solu-
tion proposed as main result, a mechanical system with
uncertain control coefficient and dynamics that are con-
sidered disturbances is simulated to realize exact velocity-
tracking with the proposed algorithm and its behavior is
shown in Section 3, the conclusions of this work are pre-
sented in Section 4, and finally Appendix section shows
the proof to the theorem.
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2. PROBLEM STATEMENT AND MAIN RESULT

Let the dynamical system

χ̇ = F (χ, t) +G(χ, t)u, (1)

where χ ∈ Rn and u ∈ R. An output (sliding variable) of
relative degree one is chosen 1 , and the dynamic of the
sliding variable could be represented by

ẋ = φ(t, x)+γ(t, x)u, |φ| ≤ F, 0 < γm ≤ γ ≤ γM , (2)

in order to drive the sliding variable to zero and holding
it, a purely integral control law based on SMC will be
proposed, then the state of the system must be extended
as

x = x1, ẋ = x2,

and considering the variable change

u =
x2 − φ
γ

,

in order to describe the system just in the variables x1
and x2, the system obtained has the form

ẋ1 = x2

ẋ2 = φ̇+ γ̇u+ γu̇

= (φ′t + φ′x1
x2) + (γ′t + γ′x1

x2)u+ γu̇

=

(
φ′t − φ

γ′t
γ

)
+

(
φ′x1

+
γ′t
γ
−
γ′x1

γ
φ

)
x2 +

γ′x1

γ
x22 + γu̇,

(3)

in this new system u̇ is considered as a control law, the
origin of the system (3) can be locally stabilized using
the Twisting algorithm, however, if its desired that the
closed-loop system has a globally stable equilibrium point
at the origin linear and quadratic terms are required
in the control law, specially because the quadratic term
in x2 in not globally Lipschitz. Therefore the controller
proposed to achieve this task has the form

u̇ = −k1bx1e0−c1bx2e0−k2x1−c2x2−k3bx1e2−c3bx2e2,
(4)

where bαeβ = |α|βsign(α) , the control law (4) has terms
with exponent zero that provides the properties of 2-
SMC, linear and quadratic terms that allows the rejection
of the uncertainties with greater exponents (quadratic
terms in the control law are crucial in order to make the
trajectories of the system well defined in all the space).

Assumption 1. It will be assumed that the partial deriva-
tives φ′t, φ

′
x, γ
′
t, γ
′
x are bounded.

Theorem 1. Let the disturbed system (1) with a sliding
variable (2), then if the uncertain control coefficient is
such that

3γm > γM ,

there exists gains such that the control law (4) enforces
a second order sliding-mode in finite time.

Proof. The proof of the Theorem 1 will be presented in
the following subsections, and the gains of the control law
(4) can be computed as in the equations (14), (16), (19),
(23), (25), and fulfilling the LMI (24).

1 There exist several methods to design the switching surface x = 0
such that the reduced order dynamics shows desired properties
(Shtessel et. al., 2014).

2.1 Stability analysis of the nominal closed loop

In order to start the stability analysis of the closed-loop
system with the proposed control law, we are going to
consider the nominal system (φ = 0, γm = γM = 1) with
the proposed control law (4),{
ẋ1 = x2

ẋ2 = −k1bx1e0 − c1bx2e0 − k2x1 − c2x2 − k3bx1e2 − c3bx2e2.
(5)

Then to proof the stability of the origin the candidate
Lyapunov function is proposed as

V = x21 + a1x1x2 + a2x
2
2 + a3|x1|+ a4|x1|3 (6)

where the only one condition for it to be positive definite
is that

4a2 > a21,
and can be easily verified. Now calculating the partial
derivatives

∂V

∂x1
= 2x1 + a1x2 + a3bx1e0 + 3a4bx1e2,

∂V

∂x2
= a1x1 + 2a2x2,

(7)

and the derivative of the candidate Lyapunov function
with respect to the trajectories of the system is

V̇ = −W =
∂V

∂x1
ẋ1 +

∂V

∂x2
ẋ2

= (2x1x2 + a1x
2
2 + a3bx1e0x2 + 3a4bx1e2x2)

−(a1k1|x1|+ 2a2k1bx1e0x2 + a1c1x1bx2e0 + 2a2c1|x2|)

−(a1k2x21 + 2a2k2x1x2 + a1c2x1x2 + 2a2c2x
2
2)

−(a1k3|x1|3 + 2a2k3bx1e2x2 + a1c3x1bx2e2 + 2a2c3|x2|3).

In this derivative can be noted that it has terms with dif-
ferent homogeneity degrees with respect the homogeneity
weights r1 = r2 = 1 (homogeneity weights with which
it can be shown that a linear system is homogeneous),
for that reason the function W will be separated as
W = W1+W2+W3, and the task to prove that the origin
is stable become to make W1, W2, W3 positive definite

W1 =a1k1|x1|+ (2a2k1 − a3)bx1e0x2 + a1c1x1bx2e0 + 2a2c1|x2|,
W2 =a1k2x

2
1 + (2a2k2 + a1c2 − 2)x1x2 + 2a2c2x

2
2 − a1x

2
2,

W3 =a1k3|x1|3 + (2a2k3 − 3a4)bx1e2x2 + a1c3x1bx2e2 + 2a2c3|x2|3,

where it can be noticed that W1 has homogeneity degree
1, W2 has homogeneity degree 2 and W3 homogeneity
degree 3, so the three can be analyzed separately, and
if the constants of the candidate Lyapunov function are
chosen as

2a2k1 = a3, 2a2k2 + a1c2 = 2, 2a2k3 = 3a4
that allows to cancel terms without definite sign and the
functions become

W1 =a1k1|x1|+ a1c1x1bx2e0 + 2a2c1|x2|
≥a1k1|x1| − a1c1|x1|+ 2a2c1|x2|

W2 =a1k2x
2
1 + 2a2c2x

2
2 − a1x22

W3 =a1k3|x1|3 + a1c3x1bx2e2 + 2a2c3|x2|3,
so it’s easy to verify that the conditions to make W1

positive definite are

k1 > c1, c1 > 0, (8)



for making W2 positive definite the conditions are

k2 > 0, c2 > a1/2a2, (9)

and for W3 the Young inequality can be used in order to
bound terms without definite sign and the conditions are

k3 > c3/3, c3 > 0, a2 > a1/3.

The previous inequalities always have a solution, so a
controller of the form (4) can to stabilize the system
without disturbances and constant control coefficient.
Moreover there exist a Lyapunov function of the form
(6) whose derivative over the trajectories of the system
is negative definite. In addition the derivative of the
Lyapunov function can be bounded by

V̇ ≤ −a1(k1 − c1)|x1| − 2a2c1|x2|

−a1k2x21 − (2a2c2 − a1)x22

−a1
(
k3 −

c3

3

)
|x1|3 − 2c3

(
a2 −

a1

3

)
|x2|3

≤ −αV

for some α positive, and the system (5) has in the origin
a equilibrium point globally asymptotically stable.

Then the system (5) can be seen as a sum of homogeneous
vector fields as[

ẋ1
ẋ2

]
=

[
x2

−k1bx1e0 − c1bx2e0
]

+ fe(x)

with homogeneous weights r1 = 2, r2 = 1, that makes the
first part of the system (the Twisting algorithm) homoge-
neous of degree −1, and fe a vector field with terms with
greater homogeneity degree, since the Twisting algorithm
has a finite time stable equilibrium point at the origin
by quasi-homogeneity principle (Orlov , 2008) it can be
concluded the origin of the system (5) is globally finite
time stable.

2.2 Stability analysis of the disturbed closed loop

Now, considering the disturbed system of the formẋ1 = x2

ẋ2 = f1 + f2x2 + f3x
2
2

+γ(−k1bx1e0 − c1bx2e0 − k2x1 − c2x2 − k3bx1e2 − c3bx2e2),
(10)

where the functions fi are defined as

f1 =

(
φ′t − φ

γ′t
γ

)
,

f2 =

(
φ′x1

+
γ′t
γ
−
γ′x1

γ
φ

)
,

f3 =
γ′x1

γ
,

and are bounded by constant values |f1| ≤ F1, |f2| ≤
F2, |f3| ≤ F3. In order to prove the stability of the origin
of the disturbed system the same candidate Lyapunov
function (6) is going to be used, and calculating the
derivative along the trajectories of the system (10) the
next functions are obtained and them have to be positive
definite

W1 =a1k1|x1|+
(
2a2k1 −

a3

γ

)
bx1e0x2 + a1c1x1bx2e0

+ 2a2c1|x2| −
a1f1

γ
x1 −

2a2f1

γ
x2

W2 =a1k2x
2
1 +

(
2a2k2 + a1c2 −

2

γ

)
x1x2 +

(
2a2c2 −

a1

γ

)
x22

−
a1f2

γ
x1x2 −

2a2f2

γ
x22

W3 =a1k3|x1|3 +

(
2a2k3 −

3a4

γ

)
bx1e2x2 + a1c3x1bx2e2

+ 2a2c3|x2|3 −
a1f3

γ
x1x

2
2 −

2a2f3

γ
x32

2.3 Positivity of W1

The function W1 can be bounded as

W1 =a1k1|x1|+
(
2a2k1 −

a3

γ

)
bx1e0x2 + a1c1x1bx2e0

+ 2a2c1|x2| −
a1f1

γ
x1 −

2a2f1

γ
x2

≥
(
a1k1 − a1c1 −

a1F1

γ

)
|x1|

+

(
2a2c1 −

∣∣∣2a2k1 − a3

γ

∣∣∣− 2a2F1

γ

)
|x2|

that is gong to be positive definite if the next inequalities
are satisfied

γα1k1 > γa1c1 +a1F1, γ2a2c1 > |γ2a2k1−a3|+2a2F1,
(11)

if the constant a3 is chosen as a3 = 2a2k1γ̄, where
γ̄ = (γM − γm)/2 then the conditions for the positivity
of W1 are

γ(k1 − c1) > F1, γc1 > |γk1 − γ̄k1|+ F1 (12)

in these can be observed that the worst case is that the
uncertain coefficient of control γ = γm, also the term
|γm − γ̄| = (γM − γm)/2, so

γm(k1 − c1) > F1, γmc1 >
γM − γm

2
k1 + F1 (13)

choosing the gain k1 as

k1 = c1 +
F1

γm
+ β1, β1 > 0 (14)

the first inequality in (13) is satisfied and substituting in
the second one

γmc1 >
γM − γm

2
c1 +

(
γM − γm

2γm
+ 1

)
F1 +

γM − γm
2

β1

(15)
where it could be verified that necessary condition is that

3γm > γM .

and finally the gain c1 can be calculated as

c1 =
γM + γm

γm(3γm − γM )
F1 +

γM − γm
3γm − γM

β1 + β2, β2 > 0.

(16)
So, if the gains k1 and c1 are chosen as (14) and (16)
respectively the function W1 is positive definite.

2.4 Positivity of W3

In order to prove the positivity of W3 the crossed terms
of the variables x1 and x2 are going to be bounded using
the Young’s inequality



bx1e2x2 ≤
2|x1|3

3
+
|x2|3

3
, x1bx2e2 ≤

|x1|3

3
+

2|x2|3

3
.

(17)
Then choosing the constant a4 such that 3a4 = 2a2k3γM
and using the Young’s inequality to bound the crossed
terms, the conditions for the positivity of W3 are

γa1k3 >
2

3
(γM − γ)(2a2k3) +

1

3
a1F3,

γa1k3 >
1

3
γa1c3 +

1

3
a1F3,

γ2a2c3 >
1

3
(γM − γ)(2a2k3) +

2

3
a1F3 + 2a2F3,

γ2a2c3 >
2

3
γa1c3 +

2

3
a1F3 + 2a2F3,

(18)

if the gain k3 is calculated as

k3 =
c3
3

+
F3

3γm
+ β3, (19)

the fisrt inequality in (18) is satisfied, now doing d =
a2/a1 the other ones end as

γmk3 >
4

3
(γM − γm)dk3 +

F3

3

γmc3 >
1

3
(γM − γm)k3 +

F3

3d
+ F3

γmc3 >
1

3d
γmc3 +

F3

3d
+ F3

of this new inequalities it’s easy to see that the next
conditions are required

d >
1

3
, d <

3γm
4(γM − γm)

(20)

but in the inequalities d appears multiplying and divid-
ing, so a good choice to select d is as the average

d =
1

2

(
1

3
+

3γm
4(γM − γm)

)
=

4γM + 5γm
24(γM − γm)

, (21)

then substituting in the inequalities

k3 >
6F3

13γm − 4γM
,

c3 >
F3

γm

(
12γM − 3γm
13γm − 4γM

)
,

(22)

and taking the other inequality and substituting d y k3
the gain c3 can be computed as

c3 =
3(γM − γm)

10γm − γM
β3 +

F3

γm
d1 + β4,

d1 =
109γmγM + 4γ2M − 32γ2m
35γmγM − 4γ2M + 50γ2m

,
(23)

finally the gains should accomplish the inequalities (23),
so the constants β3, β4 can be computed as

β3 >
F3

3γm

(
−130γmγM + 56γ2M + 74γ2m

32γmγM − 16γ2M + 65γ2m

)
,

β4 >
F3

γm

(
12γM − 3γm
13γm − 4γM

− d1
)
,

and the gains k3 and c3 computed as (19) and (23) ensures
the function W3 is positive definite.

Remark 1. If the values of the uncertain control coeffi-
cient are γM = γm, then the constants should be

β3 > 0, β4 > 0.

And, in the worst case the values of the uncertain control
coefficient are γM = 3γm, and the constants should be

β3 >
188

51

F3

γm
≈ 3.687

F3

γm
,

β4 >
F3

γ

(
33− 331

119

)
≈ 30.22

F3

γm
.

2.5 Positivity of W2

In order to minimize the value of the crossed terms of
x1, x2 without definite sign, some constants are chosen
to achieve the equation

2 = γ̄(2a2k2 + a1c2),

then, considering the worst framework in the values of the
uncertain control coefficient W2 will be positive definite
if the LMI is satisfiedγma1k2 γM − γm

4
(2a2k2 + a1c2) +

1

2
a1F2

? γm2a2c2 − a1 − 2a2F2

 > 0

and from the previous subsection d = a2/a1, a1 > 0, then
the LMI becomeγmk2 γM − γm

4
(2dk2 + c2) +

1

2
F2

? γm2dc2 − 1− 2dF2

 > 0, (24)

where the condition 3γm > γM appear again, then the
gains that always accomplish the LMI (24) should be

k2 =
c2
2d
, (25)

4c2γm

(
γmc2 −

1

2d
− F2

)
> F 2

2 +c2(γM−γm)(2F2+(γM−γm)c2).

and the function W2 is positive definite with these gains.

Finally the system (10) has in the origin a equilibrium
point globally asymptotically stable. Then, considering
again the system as a sum of homogeneous terms, the
homogeneous approximation at the origin with homoge-
neous weights r1 = 2, r2 = 1 is the Twisting algorithm
which is finite time stable itself and it can be concluded by
quasi-homogeneity that the system (10) has an globally
finite time equilibrium point at the origin.

3. SIMULATIONS AND NUMERICAL EXAMPLES

For this section the motivational example shown in
(Castillo et. al., 2016) is considered

(1 + cos2(q))q̈ + g sin(q) + b(q̇ + arctan(q̇)) = u (26)

where q, q̇ ∈ R are the state variables and u ∈ R
the control input. The terms of the differential equation
represent a varying inertia moment, gravitational term
and viscous and dry friction. It is desired to realize exact
velocity-tracking to a desired trajectory q̇d. By defining
the error variable e1 = q̇− q̇d, the velocity error dynamics
are

ė1 = [u− g sin(q)− b(q̇ + arctan(q̇))](1 + cos2(q))−1 − q̈d



then, extending the system with ė1 = e2, the total error
dynamics are

ė1 = e2

ė2 = γ(f11 + f21e1 + f22e2 + f31e
2
1 + f32e1e2 + u̇) + f12

where fij , γ are defined by

γ =
1

1 + cos2(q)
,

f11 =
sin(2q)

1 + cos2(q)
q̇d(g sin(q) + b(q̇d + arctan(e1 + q̇d)))

− g cos(q)q̇d − bq̈d
2 + (e1 + q̇d)

2

1 + (e1 + q̇d)2
,

f12 =−
...
q d,

f21 =
sin(2q)

1 + cos2(q)
(2bq̇d + g sin(q) + b arctan(e1 + q̇d)

− g cos(q),

f22 = sin(2q)q̇d − b
2 + (e1 + q̇d)

2

1 + (e1 + q̇d)2
,

f31 =
sin(2q)

1 + cos2(q)
b,

f32 = sin(2q),

It should be noted that even the existence of damping b
makes the original system stable, in the tracking problem
damping generates terms that should be compensated, if
the dry friction term is considered as a sign function, then
the controller could not maintain the trajectory every
time since the term to compensate is discontinuous and
the control law is designed to be continuous. The desired
speed is considered q̇d = a sin(ωt) and the parameters are
b = 1, g = 10, a = 2, ω = 2 then fij and γ are bounded
as

0.5 ≤ γ ≤ 1,

|f11| ≤ 46,

|f12| ≤ 8,

|f21| ≤ 20.4,

|f22| ≤ 4,

|f31| ≤ 1,

|f31| ≤ 1,

then the gains were selected as

k1 = 150 k2 = 80 k3 = 2,
c1 = 100 c2 = 80 c3 = 2,

(27)

and in the Figure 1 is shown the behavior of the tracking
of the speed of the mechanical system considering that it
starts at rest (q(0) = q̇(0) = 0).

4. CONCLUSIONS

A second-order sliding mode controller was designed to
ensure the convergence of a system with relative degree
one sliding variable despite having bounded disturbances
and uncertain control coefficient under certain constraints
if the derivative of the sliding variable is known, in
this case it has the advantage that the control law is
continuous Lipschitz with respect to time and therefore
the generated chattering could be less than the generated

0 0.5 1 1.5 2 2.5 3 3.5 4
−5

0

5

dq
/d

t

0 0.5 1 1.5 2 2.5 3 3.5 4
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−0.05
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0.1

e 1

0 0.5 1 1.5 2 2.5 3 3.5 4
0

5
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time [s]

u

3.6 3.8 4
−2

0

2
x 10

−4

Fig. 1. Behavior of the system (26)with gains (27).

by a control law with infinite gain at the origin (STA) or
a discontinuous one (FOSM) 2 , as disadvantage has that
in case the derivative is unknown, it has to be estimated.
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