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Abstract: The problem of hybrid position/force control over rigid surfaces when only joint
position and force measurements are available is considered. To achieve position tracking in
this scheme it is commonly assumed that the contact force on the robot and the angular
velocity are measured. Nevertheless, in some applications it is convenient to remove sensors
for a variety of reasons: to reduce costs, the weight of the robot, the size, etc. In this work,
a Levant–differentiator approach is used to estimate velocity in order to achieve position
tracking for the non–delayed scenario but with force measurement. To achieve this objective,
a comparison with a dynamic extension and a high–gain observer were employed, which are
known in the literature as Generalized Proportional Integral (GPI) observers. The GPI observer
allows, besides simultaneous estimation of robot joint velocity and the contact force over the
environment. In other words, the proposed algorithm achieves movement of the robot over the
surface and simultaneous application of a force desired, while at the same time it performs an
estimation of the velocity and force signals. There are some advantages in using the Levant
differentiator such as improved tracking position without the knowledge of the robot dynamic
model for implementation.
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1. INTRODUCTION

Many applications involving a robotic manipulator re-
quire its interaction with the environment. In such a
case, it becomes necessary to control not only the motion
of the manipulator but also the interaction force with
the environment. There are basically two approaches to
deal with the motion and force control problem: the
direct and indirect force control. In the later the posi-
tion and force control are achieved by establishing the
desired impedance between the end-effector and the envi-
ronment. Impedance and Compliance controllers belong
to this category. On the other hand, in the direct force
approach the task is achieved by taking into account an
explicit force feedback, e.g. hybrid control. For the contact
with rigid surfaces some approaches have been developed
based on linear observers (Hacksel and Salcudean, 1994),
(Mart́ınez-Rosas et al., 2006), nonlinear observers based
on PID control (Arteaga-Pérez et al., 2013), and GPI ob-
servers (Gutiérrez-Giles and Arteaga-Pérez, 2014). Most
of the cases, force observes require a dynamic model of the
robot. To overcome the unknown surface problem this can
be considered as a hybrid system Shaft and Schumacher
(2000). With the force measurement and the velocity

estimation we can estimate the surface. A comparison
between two different velocity estimator schemes is car-
ried out, guaranteeing position and force tracking over
a surface. Simulations results are presented to support
the validity of the proposed approach. The first approach
to deal with the motion and force control problem, and
the main results are from Gutiérrez-Giles and Arteaga-
Pérez (2016), Gutiérrez-Giles (2016), and with the posi-
tion measurement and the Levant differentiator the latter
velocity estimation is obtained to be used with the same
control scheme.

Alternatively to the use of a controller GPI Gutiérrez-
Giles and Arteaga-Pérez (2016), Gutiérrez-Giles (2016)
the Levant differentiator can be used to estimate the
velocity. To the best of the author knowledge there are
no similar results for the problem treated here, i.e.,
using the Levant differentiator to estimate the velocity
for the hybrid force/position control without velocity
measurements and without a geometric description of
the surface. Although the main idea is new to there are
some differences and advantages in this work. The first
difference is that no knowledge of the dynamic robot
model is needed to implement the differentiator. Is not
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Fig. 1. Two link planar robot in contact with a surface.

compensating for robot dynamic uncertainties Jung and
Hsia (2000), the use of the robot dynamic model is not
required, just the joints position, for simulations results
is required but for implementation is not necessary. A
second distinction of this work is that the proposed
differentiator is designed to use a minimal computing
resources, which is an important practical advantage.

The paper is organized as follows: in Section 2 the
mathematical model of the systems is given and some
useful properties as well. In Section 3 is presented the
main result, that is, the observer and controller design.
A numerical simulation to illustrate the approach is
presented in Section 4. Finally, some conclusions are given
in Section 5.

2. MATHEMATICAL MODEL AND PROPERTIES

Consider a n–degrees of freedom manipulator in contact
with a rigid surface Figure 1. Let q ∈ <n be the vector of
generalized coordinates and τ ∈ <n the vector of input
torques. The corresponding dynamic model is given by

H(q)q̈ +C(q, q̇)q̇ +Dq̇ + g(q) = τ + JT
ϕ(q)λ (1)

where, for the manipulator, H = H(q) ∈ <n×n is the
inertia matrix, Cq̇ = C(q, q̇)q̇ ∈ <n is the vector of
centrifugal and Coriolis forces, D ∈ <n×n is a diagonal
matrix of viscous friction coefficients, g = g(q) ∈ <n is
the vector of gravitational torques, τ ∈ <n is the vector
of input torques, λ ∈ <n×n is the vector of Lagrange
multipliers (physically represents the force exerted by the
manipulator over the environment at the contact point),

and JT
ϕ(q) , ∂ϕ(q)

∂q ∈ <n is the gradient of the m

holonomic constrains, specified in terms of the generalized
coordinates, defined by

ϕ(q) = 0 (2)

These constrains can also be defined in terms of the end
effector coordinates x ∈ <n

ϕ(x) = 0 (3)

Jϕ(q) = JϕxJ(q) (4)

where J(q) ∈ <n×n is the analytic Jacobian of the
manipulator. Note that with a suitable normalization it

can be done ‖ Jϕx ‖= 1. For simplicity, we assume that
the robots have only revolute joints. In such case, for
each manipulator, the following well–known properties
hold (Arteaga-Pérez, 1998).

Property 2.1. The inertia matrix is symmetric, positive
definite and fulfils λh‖x‖2 ≤ xTHi(qi)x ≤ λH‖x‖2 ∀x ∈
<n, with 0 < λh ≤ λH <∞. �

Property 2.2. With a proper definition of Ci(qi, q̇i), the

matrix Ḣi − 2Ci is skew–symmetric. �

Property 2.3. The vectorCi(qi, q̇i)q̇i fulfilsCi(qi,x)y =
Ci(qi,y)x ,∀x,y ∈ <n. �

3. OBSERVER AND CONTROLLER DESIGN

Let q1 , q and q2 , q̇. A state space representation of
(1) is given by

q̇1 = q2 (5)

q̇2 = H−1q1 (τ −N(q1, q2)) + z1 , (6)

where N(q1, q2) , C(q1, q2)q2 +Dq2 + g(q1) and z1 ,
H−1(q1)JT

ϕ(q1)λ. One of the goals of the first scheme is
to estimate the contact force λ, contained in the variable
z1, by taking into account the following (Sira-Ramı́rez
et al., 2010).

Assumption 3.1. The vector z1 can be written as

z1(t) =

p∑
i=1

ait
i + r(t) , (7)

where ai ∈ <n, i = 1, . . . , p is a vector of constant
coefficients and ri ∈ <n is a residual term. �

Assumption 3.2. Each vector z1 and at least its first
p time derivatives exist (Gutiérrez-Giles and Arteaga-
Pérez, 2014). �

By taking into account Assumptions 3.1 and 3.2, an
internal model for each time vector z1i(t) can be written
as

ż1 = z2 (8)

ż2 = z3 (9)

...

ż(p−1) = zp (10)

żp = r(p)(t) . (11)

3.1 Observers’ design

To avoid the measurement of the joint–velocities for each
manipulator and the contact force that the robot exerts
over the environment, (Gutiérrez-Giles, 2016) propose
the following linear high–gain observer



˙̂q1 = q̂2 + λp+1q̃1 (12)

˙̂q2 = H−1q1

(
τ −N(q1,

˙̂q2)
)

+ ẑ1 + λpq̃1 (13)

˙̂z1 = ẑ2 + λp−1q̃1 (14)

˙̂z2 = ẑ3 + λp−2q̃1 (15)

...

˙̂z(p−1) = ẑp + λ1q̃1 (16)

˙̂zp = λ0q̃1 , (17)

where q̃1 , q1 − q̂1, and N̂(q1,
˙̂q2) = C(q1,

˙̂q2)q̂2 +

D ˙̂q2 + g(q1). Note that q̂2 is imployed instead of q2 to
avoid velocity measurements.

From (4) and (6) it follows

JTϕxλ = J−T (q1)H(q1)z1 (18)

Therefore, an estimate of the contact force could be
computed as

λ̂ =‖ JTϕxλ ‖=‖ J
−T (q1)H(q1)z1 ‖ (19)

because ‖ JTϕx ‖= 1. Because it is assumed that the
geometry of the constraint surface is not known, an online
estimation of the gradient of this surface in workspace
coordinates is proposed as

˙̂
JTϕx =

(
γ

λ̂+ ε

)
Q̂xJ

−T (q1)H(q1)z1 (20)

where γ > 0 is a scalar adaptation gain, ε << λ is a
(small) positive constant to avoid division by zero. Any
r-sliding homogeneous controller can be complemented
by an (r− 1)th order differentiator producing an output-
feedback controller. Given the bounded function f(t)
defined in the interval [0,∞], with unknown measure-
ments but bounded and signal f0(t) unknown, to estimate

ḟ0(t), f̈0(t), ..., fk0 (t) in real time the following differentia-
tor is used (Levant, 2003). Any r-sliding homogeneous
controller can be complemented by an (r − 1)th order
differentiator producing an output-feedback controller.
The Levant differentiator is defined

ż0 = v0,

v0 = −λkL1/(k+1) | z0 − f(t) |k/(k+1) sign(z0 − f(t))

+ z1 (21)

ż1 = v1,

v1 = −λkL1/k | z1 − v0 |(k+1)/k sign(z1 − v0)

+ z2 (22)

... (23)

żk−1 = vk−1,

vk−1 = −λ1L1/2 | zk−1 − vk−2 |1/2 sign(zk−1 − vk−2)

+ zk (24)

żk = −λ0Lsign(zk − vk−1) (25)

To estimate the velocity required one of the options is to
use a Levant third order differentiator.

v0 = −2L | z0 − f |
2
3 sign(z0 − f) + z1 (26)

v1 = −1.5L | z1 − v0 |
1
2 sign(z1 − v0) + z2 (27)

v2 = −1.1L(z2 − v1) (28)

ż0 = v0 (29)

ż1 = v1 (30)

ż2 = v2 (31)

the gains for the Levant differentiator are defined in
(Shtessel et al., 2014).

3.2 Controllers’ design

To achieve position and force tracking (Gutiérrez-Giles
and Arteaga-Pérez, 2016) propose the control law.

τ = −Kpe1 −Kv(q̂2 − q̇d)

− Q̂Ki

∫ t

0

e1dϑ− Ĵ
T
ϕ λd + Ĵ

+

ϕkFi∆F̄ (32)

where Kp,Kv,Ki ∈ Rn×n are diagonal positive definite
matrices of constant gains, kFi > 0 is the integral force
control gain e1 , q1 − qd is the position tracking error,
and

Ĵ
T
ϕ , J(q)Ĵ

T
ϕx (33)

Ĵ
+

ϕ , Ĵ
T
ϕ

(
ĴϕĴ

T
ϕ

)−1

(34)

Q̂ , I − Ĵ
+
ϕ Ĵϕ (35)

Also, it is defined

∆λ̄ , λ̂− λd (36)

∆F̄ ,
∫ t

0

∆λ̄dϑ (37)

4. SIMULATION

A simulation with a manipulator was carried out for
illustration proposes. For the simulation a two–links pla-
nar manipulator with revolute joints was considered. The
parameters used for the numerical simulation were: mass
of the links, m1 = 3.9473[Kg], m2 = 0.6232[Kg], length
of the links, l1 = l2 = 0.38[m], and viscous friction
coefficients, d1 = d2 = 1.2[N ·m/rad]. The task consisted
on force and position tracking over a rigid surface consid-
ering both control approaches. The assumed surface is a
segment of a circle described by

ϕ(x) = (x− h)2 + (y − k)2 − r2 = 0 (38)

where (x, y) stands for the task-space coordinates, r =
0.1[m] is the radius, and (h, k) = (0.4, 0)[m] are the
coordinates of the center of the circle. At the beginning
of the task, the tip of the robot manipulator is in
contact with the surface. The task consisted in following
a trajectory from the point (x, y) = (0.32, 0.06)[m] to the
point (x, y) = (0.48, 0.06)[m] over the surface in a time
tf = 10[sec], while simultaneously it is desired to track a
force signal given by (Gutiérrez-Giles and Arteaga-Pérez,
2016)

λd(t) =

{
20 + 40(cos(0.8πt/tf ) sin(1.6πt/tf ))[N] if t ≤ tf

20 + 40(cos(0.8π) sin(1.6π))[N] if t > tf
(39)
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Fig. 2. Position tracking in Cartesian coordinates, GPI
scheme.
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Fig. 3. Position tracking in Cartesian coordinates, Levant
scheme.

The controller gains for the manipulator control law
with the GPI scheme are Kp = diag(1500; 1500), Kv =
diag(10; 10), Ki = diag(1000; 1000), and kFi = 0.5,
and for the Levant scheme are Kp = diag(1850; 1850),
Kv = diag(10; 10), Ki = diag(1000; 1000), and kFi = 0.5.
The gains used for the GPI Kv = diag(10, 10), Λ =
diag(20, 20).

In Figure 2 and Figure 3 the position of the manipulator
is shown in cartesian coordinates for both schemes. The
velocity estimation with the GPI and the Levant differ-
entiator is shown in Figure 4 and Figure 5. In this figures
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Fig. 4. Joint velocity manipulator, GPI scheme.
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Fig. 5. Joint velocity manipulator, Levant scheme.

one can see that the estimation of the velocity is pretty
accurate and converges in steady state. Figure 6 shows a
velocity estimation comparison. The velocity estimation
error is shown in Figure 7 and Figure 8. The position
tracking and the tracking error in cartesian coordinates
are shown in Figure 9 and Figure 10. Finally, Figures 11
and 12 show the position tracking in the xy plane.

5. CONCLUSIONS

In this work, a comparison between two velocity estimator
schemes is considered, a observer design and a differen-
tiator were presented. The latter proposed algorithm only
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Fig. 6. Velocity estimation comparison.

0 5 10 15

−0.02

0

0.02

0.04

[r
ad

/s
]

0 5 10 15
−0.1

−0.05

0

0.05

0.1

[r
ad

/s
]

t[s]

Fig. 7. Velocity estimation error, GPI scheme.

needs the measure of the joint position of the manipulator
i.e., it does not need the knowledge of the dynamic model.
A numerical simulation was carried out to illustrate the
effectiveness of the approach. So controller design be-
comes cheap and simpler. Simulation results were pro-
vided to demonstrate the efficacy of the approach. Two
velocity estimator approaches were designed to obtain
close tracking position over a rigid surface. As the simu-
lation results show the good performance of the Levant
differentiator approach. For implementation results, only
one sensor is required for the measurement of position
for each joint and velocity is estimated through Levant
differentiator.
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Fig. 8. Velocity estimation error, Levant scheme.
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Fig. 9. Position tracking error, GPI scheme.

As a future work, it will be studied the suitability of the
proposed approach in a experimental platform consider-
ing a master-slave teleoperation system interacting with
a rigid surface in presence of friction.
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