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Abstract: This paper presents real-time implementation results of error-based output
regulation for a Twin Rotor MIMO system via a recently appeared linear matrix inequality
approach, which can be solved via convex optimization techniques. Besides guaranteeing
tracking of the desired trajectories provided by an exosystem, the convex formulation allows
designing performance measures such as decay rate and control bounds, which are key for
real-time implementation. The reported results illustrate the applicability and effectiveness
of the presented approach.
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1. INTRODUCTION

Output regulation is defined as the problem of asymp-
totic tracking of a reference signal under uncertainties
and perturbations; the system must satisfy some stabil-
ity properties in order to guarantee output regulation
(Isidori, 1995). A complete solution to this problem has
been provided in (Isidori and Byrnes, 1990); it is based
on solving the well-known Francis-Isidori-Byrnes (FIB)
equations, which arise in the field of differential geometry
control techniques. Output regulation for linear (Fran-
cis, 1977; Bernal et al., 2012) and nonlinear systems
(Carr, 1981; Isidori and Byrnes, 1990; Bernal et al.,
2012) have been addressed in the literature. On the other
hand, two regulation problems can be found: 1) State-
Feedback Output Regulation Problem (SFORP), which
corresponds to a situation where all states are avail-
able, and 2) Error-Feedback Output Regulation Problem
(EFORP), where only the output of the system is avail-
able and, therefore, the error function.

Solving the FIB equations is a cumbersome task in the
nonlinear case. This is the reason why several approaches
have appeared in the recent years to tackle this problem
by reducing it to a linear one via fuzzy techniques Meda
and Castillo (2009) or dynamic implementation Meda
et al. (2012) of the nonlinear mappings. In Bernal et al.
(2012); Bernal et al. (2012) it has been proved that linear
matrix inequalities (LMIs) can be used for solving the
FIB equations. LMIs are highly appreciated as they allow
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optimal and systematic computation of solutions (Boyd
et al., 1994); common control tasks such as input/output
saturation limits, decay rate, and H∞ control can be
easily specified as LMIs (Duan and Yu, 2013). This paper
follows the latter path by using the plant linearization as
basis for LMI-based output regulation design; since real-
time implementation obliges to use only those states that
are available, error-feedback will be employed.

The solution obtained with the aforementioned method-
ology will be applied on a Twin Rotor MIMO system
(TRMS), which captures the most important features
of an helicopter; the main differences being that the
TRMS is fixed on a pole and the position and velocity
are regulated through the rotors whilst in an helicopter
there is no pole and rotor velocity is almost constant,
the propulsion being dependent on the angle variation of
the rotor helixes (Feedback, 1998). A 9 state model will
be employed in order to include the effect of the crossed
couplings between the two actuators and the elevation
and azimuth angles.

The main contribution of this work is a single step algo-
rithm via linear matrix inequalities which may includes
designing performance measures, an important feature in
real-time implementation, such that regulation mappings
as well as the control gains can be directly obtained for
the EFORP. This paper is organized as follows. Section
2 describes the TRMS as well as its nonlinear model; a
linearization of the latter is obtained for further develop-
ments. Section 3 provides conditions for an LMI solution
of the EFORP with guaranteed decay rate. Section 4
gives the simulation and real-time implementation results
of the proposed scheme when applied to the TRMS; real-
time implementation issues under perturbations are also
discussed. Finally, Section 5 briefs the paper results and
provides some tracks for future work on the subject.
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2. THE TWIN ROTOR

The TRMS consists on a beam fixed to a pole, as can
be seen in the figure 1, with the beam having two DC
motors (rotors) placed at its extremes to counterbalance
gravity (Feedback, 1998). Figure 1 shows the elevation
and azimuth angles labelled as x2 and x5, respectively.
The TRMS integrates an electrical unit which transfers
measured signals from encoder sensors to the PC and pro-
vides control signals to the motors through an I/O card.
This unit uses a PCI I/O card model 33−007 of Feedback
Instruments and operates via MATLAB/SIMULINK.
Real-time implementation of control algorithms will be
performed using this platform.

There exist different models of the TRMS: a 6-state
version is presented in (Tao et al., 2010; Nejjari et al.,
2011), which disregards the coupling between rotors; a
7-state representation can be found in (Feedback, 1998;
Ahmed et al., 2009; Gonzalez et al., 2012), which includes
the internal coupling as an additional state. In this work,
more information about the dynamics of the system has
been considered with a 9-state model which adds the
integrals of the elevation and azimuth angles. In the
TRMS model (1) below, the states x1, x2, x3, x4, x5, x6,
x7, x8, and x9 correspond to the elevation motor velocity,
the elevation angle, the elevation angular velocity, the tail
motor velocity, the azimuth angle, the azimuth angular
velocity, a coupling internal state, the elevation angle
integral, and the azimuth angle integral, respectively. The
elevation angle x2 and the azimuth angle x5 are available
because they are measured with the encoder sensors; they
represent the outputs of the system:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6
ẋ7
ẋ8
ẋ9

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.8333 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

E1 E2 −
B1Ψ

I1
0 0 E3 0 0 0

0 0 0 −1 0 0 0 0 0
0 0 0 0 −1 0 0 0 0

0 0 0 E4 0 −
B1Φ

I2
−

1

I2
0 0

E5 0 0 0 0 0 −
1

I2
0 0

0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
A(x(t))

⎡
⎢⎢⎢⎢⎢⎣

x1
x2
x3
x4
x5
x6
x7
x8
x9

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.9166 0
0 0
0 0
0 0.8
0 0
0 0
E6 0
0 0
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
B(x(t))

[
u1

u2

]
(1)

with E1 = b1+a1x1

I1
(1−Kgyx6 cosx2), E2 =

−Mfg sin x2

I1x2

,

E3 = 0.0163
I2

x6 sin(2x2), E4 = b2+a2x4

I2
, E5 = B̃(b1+a1x1)

2 −

Ã (0.5b1 + a1x1), E6 = 0.9166Ã (0.5b1 + a1x1), where
I1 = 0.068 kg·m2 is the moment of inertia of vertical
rotor, I2 = 0.02 kg·m2 is the moment of inertia of
horizontal rotor, a1 = 0.0135, b1 = 0.0924, a2 = 0.02,
and b2 = 0.09 are the static characteristic parameters,

Fig. 1. Twin Rotor MIMO System

Mfg = 0.32 N·m is the gravity momentum, B1ψ = 0.006
N·m·s/rad and B1φ = 0.1 N·m·s/rad are the friction
momentum function parameters, Kgy = 0.05 s/rad is

the gyroscopic momentum parameter, Ã = −0.7 and
B̃ = −0.2 are auxiliar constants.

Now, in order to apply the methodology related to output
regulation, a linearization of nonlinear system (1) is
necessary. The following linear state-space representation
is obtained:

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t), (2)

A=
∂A (x)

∂x

∣∣∣∣
x=0

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−0.8 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
1.4 −4.7 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 4.5 0 −5 −50 0 0
0 0 0 0 0 0 −0.5 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

B=
∂B (x)

∂x

∣∣∣∣
x=0

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.9167 0
0 0
0 0
0 0.8
0 0
0 0

−0.0296 0
0 0
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, C=

[
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0

]
.

Before going further, the following notations are intro-
duced: “ <′′ and “ >′′ stand for matrix negative and
positive definiteness, respectively; “ ≺′′ and “ �′′ stand
for element-wise ordinary lower-than and greater-than
relationships amongst elements of matrix expressions,
respectively.

3. CONTROLLER DESIGN VIA LMIS

This section presents developments which lead to condi-
tions in an LMI form such that the output regulation is
guaranteed. It is mainly based on the works in Bernal
et al. (2012); Bernal et al. (2012). Consider the following
linear system:

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t), (3)

ẇ(t) = Sw(t), (4)

e(t) = Cx(t) +Qw(t), (5)



where x(t) ∈ X ⊂ R
n is the state vector, u(t) ∈ R

m

is the control input, y(t) ∈ R
o is the output vector,

w(t) ∈ W ⊂ R
q is the state vector of an exosystem,

e(t) ∈ R
o is the error vector, A ∈ R

n×n, B ∈ R
n×m,

S ∈ R
q×q, C ∈ R

o×n, and Q ∈ R
o×q are known matrices.

The dynamic system in (4) is called exosystem which
generates the reference signals to be tracked. Exosystem
is assumed to be neutral stable, which means that all
the eigenvalues of matrix S are in the imaginary axes
in the complex plane leading to periodic orbits. The
best scenario, from a “feedback point of view”, happens
when all states are accessible. However, recall that for
the TRMS not all of them are available (only x2 and x5

of 9 states), which is why we turn to an error-feedback
scheme.

The Linear Error-Feedback Output Regulation Problem
(LEFORP) consists on finding a control law based on
a error-feedback dynamic observer with the following
structure:

ξ̇(t) = Fξ(t) +Ge(t), (6)

u(t) = Hξ(t),

where ξ(t) =
[
ξTf (t) ξTs (t)

]T
∈ Ξ ⊂ R

n+q, ξf (t) ∈ R
n

goes to x(t) when t → ∞, ξs(t) ∈ R
q goes to w(t) when

t → ∞.

The design matrices F ∈ R
(n+q)×(n+q), G =

[
GT

0 GT
1

]T
,

G0 ∈ R
n×m, G1 ∈ R

q×m, and H ∈ R
m×(n+q) must

guarantee that ∀(x(0), ξ(0), w(0)) ∈ Ω ⊂ X × Ξ × W ,
the error (5) is driven to zero and the extended matrix[

A BH
GC F

]
(7)

is Hurwitz, thus, the control input u(t) stabilizes the
linear system (3) when w(t) = 0.

The LEFORP has solution if and only if (Francis, 1977):

(1) Re{σ(S)} ≥ 0, the pair (A,B) is stabilizable, and

the pair

([
A 0
0 S

]
, [C Q]

)
is detectable.

(2) ∃Π ∈ R
n×q, ∃Γ ∈ R

m×q such that (8) and (9) holds.

ΠS = AΠ+BΓ, (8)

0 = CΠ+Q. (9)

The procedure to solve the LEFORP is described here-
after:

(1) Find a matrix K such as (A+BK) is Hurwitz.
(2) Search matrices Π and Γ such as (8) and (9) are

satisfied.

(3) Find a matrix G =

[
G0

G1

]
such as

([
A 0
0 S

]
−

[
G0

G1

]
[C Q]

)
(10)

is Hurwitz. Then, the matrices F and H in the
dynamic observer (6) can be constructed as follows:

F =

[
A+BK −G0C B (Γ−KΠ)−G0Q

−G1C S −G1Q

]
, (11)

H = [K Γ−KΠ] . (12)

(4) Apply control law u(t) = Hξ(t) to system (3).

The aforementioned steps can be performed in a system-
atic way via LMIs. In order to get the gain matrixK, con-
sider a linear system as in (2) with a linear state-feedback
u = Kx. The direct Lyapunov method is applied to find
the controller gain K. Let consider a quadratic Lyapunov
function V (x) = xTP1x, P1 = PT

1 > 0. The closed-loop
system ẋ = (A+BK)x is stable with decay-rate α1 > 0

if and only if V̇ (x)+α1V (x) < 0. Then, LMIs conditions
such that these performances hold are:

AX1+BM1+X1A
T+MT

1 BT+2α1X1 < 0, X1 > 0, (13)

where X1 = XT
1 ∈ R

n×n and M1 ∈ R
m×n. Once, LMIs

(13) are solved for decision variables X1 and M1, the
Lyapunov matrix P1 and matrix K are computed with
P1 = X−1

1 and K = M1X
−1
1 , respectively.

Using a similar path with V (ξ) = ξTP2ξ, P2 = PT
2 > 0

and decay-rate α2 > 0, the matrix G such that (10)
is Hurwitz can be found solving the following LMI
conditions:

P2Ā− LC̄ + ĀTP2 − C̄TL+ 2α2P2 < 0, P2 > 0 (14)

where Ā =

[
A 0
0 S

]T
, C̄ = [C Q], P2 ∈ R

(n+q)×(n+q), and

L ∈ R
(n+q)×m. Then, the observer gains G is computed

as G = P−1
2 L.

An algorithm to find mappings Π and Γ based on
element-wise LMIs has been presented in (Bernal et al.,
2012). It consists on approximating the solution of the
matrix equalities (8) and (9) with arbitrarily small ac-
curacy by the following element-wise LMI minimization
problem:

min ε > 0 : −ε ≺

[
AΠ+BΓ−ΠS 0

0 CΠ+Q

]
≺ ε. (15)

Important features of this methodology is the fact that
all set of LMIs to solve the LEFORP can be run simulta-
neously in a one-step algorithm as well as the possibility
of including easily design performances as decay-rate or
input saturation limits.

4. SIMULATION AND REAL-TIME RESULTS

In this section, simulation and real-time results on TRMS
are provided to illustrate the applicability and effective-
ness of the approach. Algorithms have been programmed
using LMI toolbox (Gahinet et al., 1995) within a MAT-
LAB R2009b platform. Simulations as well as real-time
implementations have been performed using the files de-
veloped by Feedback Instruments and a PCI I/O card
model 33 − 007 which operates via Simulink/MATLAB
(Feedback, 1998).

Using a one-step LMI-based algorithm, it includes con-
ditions (13), (14), and (15), the Error-Feedback Output
regulation Problem has been solved for the Twin Rotor

MIMO System. Considering matrices S =

[
0 1
−1 0

]
and

Q =

[
−1 0
0 −1

]
and parameters α1 = 0.5 and α2 = 0, the

matrices K, G, F as well as mapping matrices Π and Γ
obtained with ε = 1.0432× 10−14 are:



K =

[
−5.2972 −4.3621 −10.451 7.4775 3.2884 · · ·
−4.7731 −10.927 −9.4577 0.64519 −19.946 · · ·

· · · −6.2104 −75.925 −16.131 1.0896
· · · −11.798 −2.918 −15.344 −11.914

]
,

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

197.6981 −211.4687
−194.2871 51.9891
−172.8943 284.9827
−377.7510 −46.4687
−460.2259 393.8069
148.8703 137.9026
−50.5104 −17.8182
40.8125 −42.4657

−223.3986 57.0063
−223.3986 56.0063
−456.6317 368.1400

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−5.68 −201.69 −9.58 6.85 214.48 · · ·
0 194.28 1 0 −51.98 · · ·

1.35 168.18 −0.08 0 −284.98 · · ·
−3.81 369.00 −7.56 −0.48 30.51 · · ·

0 460.22 0 0 −393.80 · · ·
0 −148.87 0 4.5 −137.90 · · ·

0.17 50.63 0.30 −0.22 17.72 · · ·
0 −39.81 0 0 42.46 · · ·
0 223.39 0 0 −56 · · ·
0 223.39 0 0 −56 · · ·
0 456.63 0 0 −368.14 · · ·

· · · −5.69 −69.6 −14.78 0.99 218.59 −214.95
· · · 0 0 0 0 −194.28 51.98
· · · 0 0 0 0 −172.89 284.98
· · · −9.43 −2.33 −12.27 −9.53 −359.24 −37.21
· · · 1 0 0 0 −460.22 393.80
· · · −5 −50 0 0 148.87 137.90
· · · 0.18 1.74 0.47 −0.03 −51.18 −17.70
· · · 0 0 0 0 40.81 −42.46
· · · 0 0 0 0 −223.39 57
· · · 0 0 0 0 −223.39 57
· · · 0 0 0 0 −457.63 368.14

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Π =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.7273 0.0649
1 0
0 1

−2.0015 −0.4117
0 1
−1 0

−0.0801 −0.0171
0 −1
1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Γ =

[
2.4084 3.0342
−1.9873 −3.0165

]
.

The controller gain H in (12) is:

H=

[
−5.297 −4.362 −10.451 7.478 3.288 · · ·
−4.773 −10.927 −9.458 0.645 −19.946 · · ·

· · · −6.21 −75.93 −16.13 1.09 22.8 −3.81
· · · −11.8 −2.92 −15.34 −11.91 23.13 11.57

]

Observe that due to the definition of S, the exosystem
(4) provides sinusoidal references for w1 and w2. As
stated before, the main objective is that x2 → w1 and
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x5 → w2 as t → ∞. The control input (6) based on
an error-feedback dynamics observer has been applied
to the original model (1) of TRMS using the provider
files for simulation, it shades some light about real-time
implementation, for instance, concerning the range of
control signals.

Despite simulation performing adequately, sometimes
real-time does not: it may lack energy on the actuators,
surpass their saturation limits, or being unable to deal
with unmodelled dynamics. Figures 2, 3, and 4 show
the time-response behavior of x2 (elevation angle), x5

(azimuth angle), and control law u, both simulation
(left) and real-time (right). The initial conditions are

x(0) = ξf (0) = 0 ∈ R
n and w(0) = ξs(0) = [0.2 0]

T
.

Simulation results are very similar to those in real-
time. The elevation angle (x2) and the azimuth angle
(x5) need less time in simulation than real-time to
follow the reference signals w1 and w2, respectively;
see figures 2 and 3. The approximation nature of the
employed linear scheme as well as noisy signals during
implementation are accountable for higher errors in real-
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time than simulation; this can be better appreciated
comparing the control signals (see figure 4). The actuator
limits for inputs in the TRMS are ±2.5 volts; since these
limits are satisfied when the controller is implemented,
it is not necessary to consider them for LMI additional
conditions.

Also, a systematic vanished perturbation has been ap-
plied to test the regulation scheme performance. It con-
sists on adding −2 volts from the second 41 to 43 to
control signals u1 and u2. In this case, we use a gain
K2 with decay rate α1 = 2.7. The results for x2 and x5

are shown in figures 5 and 6. As expected, the elevation
angle x2 has more difficulty than the azimuth angle x5

to follow the reference signal after the perturbation is
applied. In figure 7 it is possible to appreciate the effect
of the perturbation at second t = 41.

K2=

[
17181 −1108.8 −3081.7 2.762 7.9341 · · ·
216.74 60.156 −1.1068 −14.172 −297.53 · · ·

· · · −0.48359 533080 −20336 4.3552
· · · −43.629 6687.7 −202.1 −516.7

]
,
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5. CONCLUSIONS

The Error-Feedback Output Regulation Problem has
been addressed through convex optimization techniques.
Through a highly nonlinear plant as the Twin Rotor
MIMO system, it has been shown that an error-based
structure can be applied when only partial information
(outputs) of the system are available. The control gains
and regulation mappings have been obtained in a single
step via a linear matrix inequality algorithm, which
guarantees convergence of the outputs to the signal
references provided by the exosystem. Simulation and
real-time results have been provided to illustrate the
applicability and effectiveness of the approach. As future
work, a nonlinear approach via LMIs which expectedly
will take into account the nonlinearities hereby neglected,
is worth exploring, as trajectory tracking may improve.
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