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Abstract: In this paper a generalized functional observer for descriptor linear systems is
presented. The stability conditions of the observer are given and its performance evaluation
is made through numerical simulations. An algorithm is provided in order to highlight the
main steps involved in the functional observer design. The originality of this functional observer
lies in its capability to be configured like a simple proportional functional observer (PFO) or
like a generalized functional observer (GFO), depending on the particular requirements of the
functional estimation problem. Another important feature of the observer is that it can be used
for both linear descriptor systems or conventional linear time invariant (LTI) systems.
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1. INTRODUCTION

An important variety of mathematical tools for descriptor
systems have the advantage that they can be applied not
only to processes modeled in a descriptor form but also to
processes modeled in a conventional linear time invariant
(LTI) state-space form by considering LTI systems as a
particular case of descriptor systems. This advantage is
the main motivation to design in a descriptor framework
several modern observation and control algorithms which
in time can be applied to a wide variety of physical pro-
cesses such as hydraulic systems (Araujo et al., 2012),
mechanical systems (Dang et al., 2015), biomechanical
systems (Guelton et al.,2008), wastewater treatment pro-
cesses (Kiss et al., 2011) and electronic circuits (Hou et al.,
2017).
In the particular case of observer design for descriptor sys-
tems, several works propose different approaches to solve
the problem of state estimation (Osorio-Gordillo et al.,
2016), parameter estimation (Alma and Darouach, 2014,
Arefinia et al., 2017), unknown input estimation (Osorio-
Gordillo et al., 2014, Estrada-Manzo et al., 2015) and so
on.
Functional observers are useful when one or more func-
tions of the linear states (rather than the unknown states)
are required to be estimated. This feature is particularly
advantageous in state feedback control (Fernando et al.,
2016) and can be exploited for other control applications
such as fault detection (Emami et al., 2015) or fault toler-
ant control (Lan and Patton, 2015).
The case of functional observers for descriptor systems has
been discussed by several authors. For instance, Feng et
al. propose a functional observer (and special cases for
state and reduced-order observers) for descriptor systems
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which is designed to converge in finite-time. The authors
in Koenig et al. (2016) propose a functional observer for
discrete-time switched Lipschitz nonlinear descriptor sys-
tems which is used for fault estimation purposes. Arefinia
et al, 2017 propose a robust adaptive observer for singular
systems which is compared with a proportional-derivative
observer (PD) developed by Ren and Zhang (2010). How-
ever, an important amount of the proposed functional ob-
servers for descriptor systems considers only proportional
terms of the observation error and rarely other configura-
tions like proportional-integral or proportional-derivative
observers.
In this work, a generalized functional observer for descrip-
tor systems is proposed. The main contribution is to take
advantage of the new structure of observers for descriptor
systems proposed in Osorio-Gordillo et al. (2016) in order
to extend this result to functional observers. The interest
of this general structure is to exploit the multi functional-
ity of the generalized observer, for the reason that it can
be configured as a proportional functional observer (PFO)
which is only a particular case.

2. NOTATION AND PRELIMINARIES

This section describes the notation used in this paper. The
symbol Σ+ denotes the generalized inverse of Σ and verifies
ΣΣ+Σ = Σ. The notation E⊥ denotes a maximal row rank
matrix such that E⊥E = 0. When E is a full row rank
matrix, E⊥ = 0 by convention. Now, consider a class of
linear descriptor systems of the form:

Eẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

z(t) = Lx(t)

(1)

where x(t) ∈ Rn is the state vector of the system, u(t) ∈
Rm is the input vector, y(t) ∈ Rp is the measured output
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vector and z(t) ∈ Rq is a vector that is required to be
estimated. E ∈ Rn×n is a constant matrix such that
rank(E) = r ≤ n. A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n

and L ∈ Rq×n are known constant matrices. E⊥ ∈ Rr1×n

is a full row rank matrix, i.e. rank(E⊥) = r1 = n− r.
Assumption 1. Descriptor (1) system is R-observable and
impulse observable, i.e.

rank

 E
E⊥A
C

 = n (2)

this is equivalent to rank

[
E A
0 C
0 E

]
= rank(E) + n.

Lemma 2.1. The general solution to any equation of the
form

XA = B (3)

is given by X = BA+ − Z(I − AA+), where Z is an
arbitrary matrix of appropriate dimensions (Darouach,
2012).

Lemma 2.2. The necessary and sufficient condition for the
existence of a solution to (3) is given by Shafarevich and
Remizov (2012) where

rank

[
A
B

]
= rank(A) (4)

The following Lemma is presented by de Oliveira (2005)
and will be used later in this paper.

Lemma 2.3. Let matrices B and Q be given. The following
statements are equivalent:

i. There exists a matrix X satisfying

BX + (BX )T +Q < 0

ii. The following condition holds B⊥QB⊥T < 0

Suppose the above statements hold and assume that
B⊥B > 0. Then matrix X in statement (i) is given by

X = −γBT +
√
γLΓ1/2

where L is any matrix such that ‖L‖ < 1 and γ > 0 is any

scalar such that Γ = γBBT −Q > 0.

3. GENERALIZED FUNCTIONAL OBSERVER

3.1 Problem statement

Consider the following generalized functional observer
(GFO) of the form

ζ̇(t) = Nζ(t) + Jv(t) + F

[
−E⊥Bu(t)

y(t)

]
+Hu(t)

v̇(t) = Sζ(t) +Gv(t) +M

[
−E⊥Bu(t)

y(t)

]
ẑ(t) = Pζ(t) +Q

[
−E⊥Bu(t)

y(t)

] (5)

where ζ(t) ∈ Rq0 is the state of the observer, v(t) ∈ Rq1 is
an auxiliary vector and ẑ(t) ∈ Rq is the estimate of z(t).
N , J , F , H, S, G, M , P and Q are constant matrices
of appropriate dimensions to be determined such that
lim
t→∞

(ẑ(t)− z(t)) = 0.

The following Lemma gives the sufficient conditions for the
existence of the observer (5).

Lemma 3.1. There exists an observer having the form

given in (5) for the system (1) if the matrix

[
N J
S G

]
is

Hurwitz and if there exists a matrix T such that the
following conditions are satisfied:

a. NTE + F

[
E⊥A
C

]
− TA = 0

b. H = TB

c. STE +M

[
E⊥A
C

]
= 0

d. PTE +Q

[
E⊥A
C

]
= L

Proof 1. Consider a parameter matrix T ∈ Rq0×n and
define the transformed error vector ε(t) = ζ(t) − TEx(t).
Since E⊥E = 0 it can be deduced that E⊥Ax(t) =
−E⊥Bu(t), such that the derivative of ε(t) is given by

ε̇(t) = Nζ(t) +

(
F

[
E⊥A
C

]
− TA

)
x(t)

+(H − TB)u(t) + Jv(t)

(6)

By using the definition of ε(t), v̇(t) in (5) can be rewritten
as

v̇(t) = Sζ(t) +M

(
F

[
E⊥A
C

]
− TA

)
x(t) +Gv(t) (7)

Considering that conditions a.-c. are satisfied, equations
(6) and (7) become

ε̇(t) = Nε(t) + Jv(t) (8)

v̇(t) = Sε(t) +Gv(t) (9)

By defining an augmented state vector σ(t) =

[
ε(t)
v(t)

]
,

equations (8), (9) can be rewritten as:

σ̇(t) = Aσ(t) (10)

where

A =

[
N J
S G

]
Define the estimation error e(t) = z(t)− ẑ(t). If condition
c. is satisfied, then e(t) = Pε(t). It can be seen that if
matrix A is Hurwitz, then lim

t→∞
ε(t) = 0 and lim

t→∞
e(t) = 0.

3.2 Observer parameterization

From Lemma 3.1, it can be deduced that the design of the
observer is reduced to find the matrices N , J , F , H, S,
G, M , P , Q and T such that conditions a.-c. are satisfied.

We define now matrix Γ =

 E
E⊥A
C

 and let R ∈ Rq0×n be

a full row rank matrix such that rank

[
R
Γ

]
= rank(Γ). In

this case there always exists two matrices T and K such
that

TE +K

[
E⊥A
C

]
= R (11)

which can be rewritten as

[T K] Γ = R (12)



the general solution for (12) is

[T K] = RΓ+ − Z
(
I − ΓΓ+

)
(13)

which can be decomposed in

T = T1 − ZT2 (14)

K = K1 − ZK2 (15)

where Z is a constant matrix of appropriate dimension,
and

T1 = RΓ+

[
I
0

]
, T2 =

(
I − ΓΓ+

) [I
0

]
,

K1 = RΓ+

[
0
I

]
, K2 =

(
I − ΓΓ+

) [0
I

]
Now we define matrix Σ =

 R
E⊥A
C

. From condition a.

from Lemma 3.1 and (11), we have

N

(
R−K

[
E⊥A
C

])
+ F

[
E⊥A
C

]
= TA (16)

which can be written as[
N K̃

]
Σ = TA (17)

where K̃ = F−NK. The necessary and sufficient condition
for the existence of a solution to (17) is

rank

[
Σ
TA

]
= rank(Σ)

the general solution to (17) is[
N K̃

]
= TAΣ+ − Y1(I − ΣΣ+) (18)

if we replace (14) in (18), we obtain

N = N1 − ZN2 − Y1N3 (19)

K̃ = K̃1 − ZK̃2 − Y1K̃3 (20)

where

N1 = T1AΣ+

[
I
0

]
, N2 = T2AΣ

[
I
0

]
,

N3 = (I − ΣΣ+)

[
I
0

]
, K̃1 = T1AΣ+

[
0
I

]
,

K̃2 = T2AΣ+

[
0
I

]
, K̃3 = (I − ΣΣ+)

[
0
I

]
since F = K̃ +NK, we have

F = K̃1 +N1K − Z(K̃2 −N2K)− Y1(K̃3 −N3K)

F = F1 − ZF2 − Y1F3
(21)

where

F1 = T1AΣ+

[
K
I

]
, F2 = T2AΣ+

[
K
I

]
,

F3 = (I − ΣΣ+)

[
K
I

]
.

From (11) we have TE
E⊥A
C

 =

[
I −K
0 I

]
Σ (22)

Conditions c. and d. of Lemma 3.1 can be written as[
S M
P Q

] TE
E⊥A
C

 =

[
0
L

]
(23)

if we substitute equation (22) into (23), we obtain[
S M
P Q

] [
I −K
0 I

]
Σ =

[
0
L

]
(24)

The necessary and sufficient condition for the existence

of a solution to (24) is rank

[
Σ
L

]
= rank(Σ) and since[

I −K
0 I

]−1
=

[
I K
0 I

]
the general solution is given by[

S M
P Q

]
=

([
0
L

]
Σ+ − Y (I − ΣΣ+)

)[
I K
0 I

]
(25)

where Y =

[
Y2
Y3

]
is an arbitrary matrix of appropriate

dimensions. In this case the particular solutions for S, M ,
P and Q are given by

S = −Y2N3 (26)

M = −Y2F3 (27)

P = P1 − Y3N3 (28)

Q = Q1 − Y3F3 (29)

where

P1 = LΣ+

[
I
0

]
, Q1 = LΣ+

[
K
I

]
.

Now, by using (19) and (26), the error dynamics (10) can
be rewritten as

σ̇(t) = (A1 − YA2)σ(t) (30)

where

A1 =

[
N1 − ZN2 0

0 0

]
, Y =

[
Y1 J
Y2 G

]
and A2 =

[
N3 0
0 −I

]
.

The problem has been now reduced to find matrices Y and
Z such that matrix A is Hurwitz. This can be reached by
using the linear matrix inequality (LMI) approach.

4. OBSERVER DESIGN

Theorem 4.1. Under Assumption 1 there exist two matri-
ces Y and Z such that (30) is asymptotically stable if there
exists a matrix

X =

[
X1 X1

X1 X2

]
> 0

such that the following LMI is satisfied:

NT⊥
3

(
NT

1 X1 +X1N1 −NT
2 W

T −WN2

)
NT⊥T

3 < 0.
(31)

Where Z = X−11 W and matrix Y is determined as follows

Y = −X−1(−γBT +
√
γLΩ1/2)T (32)

where
Ω = γBBT −Q > 0 (33)

with

Q =

[
X1(N1 − ZN2) + (N1 − ZN2)TX1 (N1 − ZNT

2 )X1

X1(N1 − ZN2) 0

]
B =

[
NT

3 0
0 −I

]
and matrix L is any matrix such that ‖L‖ < 1 and γ > 0
is any scalar such that Ω > 0.

Proof 2. We define the following Lyapunov function can-
didate

V (σ(t)) = σ(t)TXσ(t) (34)

its derivative is given by

V̇ (σ(t)) = σ(t)T
[
(A1 − YA2)TX +X(A1 − YA2)

]
σ(t)

(35)



The asymptotic stability of (30) is guaranteed only if

V̇ (σ(t)) < 0, this leas to the following LMI

AT
1X − AT

2 YTX +XA1 −XYA2 < 0 (36)

which can be rewritten as

Q+ BX + (BX )T < 0 (37)

where X = −YTX, Q = XA1 + AT
1X and B = AT

2 .
According to Lemma 2.3, there exists a matrix X satisfying
(37) if and only if the following condition holds

B⊥QB⊥T < 0 (38)

with B⊥ =
[
NT⊥

3 0
]
. By using the definitions of Q and W ,

we obtain (31). Matrix Y is obtained from (32) and (33).

The following algorithm summarize the observer design to
obtain the corresponding matrices.
Algorithm 1:

(1) Choose a matrix R such that rank

[
R
Γ

]
= rank(Γ).

(2) Compute matrices N1, N2, N3, T1, T2, K1, K2, P1

and Q1.
(3) Solve the LMI (31) to find X and Z.
(4) Choose a matrix L such that ‖L‖ < 1, and a scalar

γ > 0 such that Ω > 0, then determinate matrix Y as
in (32).

(5) Compute all the matrices gains of the observer (5) by
using (19) to determinate N , (32) to determinate J
and G, (26)-(29) to find S, M , P and Q taking matrix
Y3 = 0. F is given by (21) and matrix H could be
determined with condition b. of Lemma 2.1.

5. PARTICULAR CASE

5.1 Proportional Functional observer

In order to obtain a Proportional Functional Observer
(PFO) from the GFO, it corresponds to the parameter
matrices S = 0, J = 0, M = 0, G = 0, F = [0 Fa] and
Q = [0 Qa], which generates the following observer (Trinh
and Fernando, 2011):

ζ̇(t) = Nζ(t) + Fay(t) +Hu(t)

ẑ(t) = Pζ(t) +Qay(t)
(39)

and the error dynamics (10) becomes

ε̇(t) =
(
Ã1 − ỸÃ2

)
ε(t) (40)

where Ã1 = N1−ZN2, Ỹ = Y1 and Ã2 = N3. Matrices Q,
B and X of Theorem 1 become:

Q = X(N1 − ZN2) + (N1 − ZN2)TX, B = NT
3 ,

X = −Y T
1 X

Matrices Γ and Σ are defined as Γ =

[
E
C

]
and Σ =[

R
C

]
. With these matrices, the observer matrices can be

obtained following the Algorithm 1.

6. NUMERICAL EXAMPLES

This section presents two numerical examples to illustrate
the results obtained in this paper. The first one shows an
unstable system which is stabilized by using a functional

observer to estimate the control law signal. The second
one is a stable system with uncertainties in the matrix A
in which the not measured state is estimated.

6.1 Example 1

Consider an unstable descriptor system of the form (1),

E =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 , A =

 1 0 2 1
1 −1 1 0
1 1 −1 0
0 1 0 1

 ,
B =

 0 1
1 0
1 1
0 0

 , C =

[
0 0 1 0
0 0 0 1

]
, eig(E,A) =

[
0.61
−0.61
−2

]

It can be seen that one of the eigenvalues of the descriptor
system is positive, which means that the system is unsta-
ble. The aim is to estimate a control signal u(t) = −Kx(t)
that allows to stabilize the system, by using a functional
observer. In this case, matrix L is determined using the
matrix pencil (λE −A+BK), this gives us

L = −K =

[
0.34 1.13 −0.19 −0.26
1.43 −0.01 0.24 0.39

]
.

By choosing matrix R = L and following Algorithm 1 the
following matrices are obtained

N1 =

[
0.14 0.59
−0.18 0.32

]
, N2 =



−0.02 0.46
−0.11 0.62
0.27 0.18
0.21 −0.09
0.02 −0.46
0.09 −0.16
0.02 −0.46
−0.09 0.16


,

N3 =


0.42 0.09
0.09 0.11
−0.27 −0.18
−0.21 0.09
−0.21 −0.19
0.28 −0.11

 , P1 =

[
0.58 −0.09
−0.09 0.89

]
,

T1 =

[
0.73 −0.18 0 0
−0.18 0.55 0 0

]
, T2 =



0.27 0.18 0 0
0.18 0.45 0 0

0 0 1.0 0
0 0 0 1.0

−0.27 −0.18 0 0
0.09 −0.27 0 0
−0.27 −0.18 0 0
−0.09 0.27 0 0


K1 =

[
0.27 −0.09 0.27 0.09
0.18 0.27 0.18 −0.27

]

K2 =



−0.27 0.09 −0.27 −0.09
−0.18 −0.27 −0.18 0.27

0 0 0 0
0 0 0 0

0.27 −0.09 0.27 0.09
−0.09 0.36 −0.09 −0.36
0.27 −0.09 0.27 0.09
0.09 −0.36 0.09 0.36


by using YALMIP toolbox to solve LMI (31), matrices X
and Z are obtained as



X =

 15.23 0 15.23 0
0 15.23 0 15.23

15.23 0 30.46 0
0 15.23 0 30.46

 , Z = 0.

Considering γ = 1000 and

L =



0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1


,

to obtain

Y = [ Y1 Y2 ]

where Y1 =

 52.3 8.18 −38.4 −30.08
12.87 15.54 −22.11 13.0
−29.41 −7.35 15.94 11.78
−9.71 −11.05 7.78 −9.77

 and

Y2 =

−30.01 33.92 62.64 −3.01
−23.16 −12.15 1.68 67.33
11.75 −20.22 −67.41 −1.75
8.31 2.8 −4.12 −69.77

.

With matrices Y and Z the observer matrices can be
determined

N =

[
−54.85 −11.2
−11.55 −13.2

]
, J =

[
62.64 −3.01
1.68 67.33

]
,

H =

[
0.18 0.73
0.55 −0.18

]
, S =

[
27.84 5.24
6.04 6.11

]
,

G =

[
−67.41 −1.75
−4.11 −69.77

]
, P =

[
0.58 −0.09
−0.09 0.89

]
,

F =

[
18.79 28.26 11.77 3− 37.28
17.79 −13.54 18.79 15.53

]
M =

[
−8.71 −15.28 −4.39 20.4
−8.11 5.25 −8.36 −6.07

]
Q =

[
0.41 0.13 0.34 0.21
−0.32 0.17 0.33 −0.15

]
In order to provide a comparison between the perfor-
mances of the observers we have designed a Proportional
Functional Observer with the parameter matrices being

N =

[
−0.5 −0.13
0.13 −0.5

]
, Fa =

[
3.5 1.17
0.67 0.17

]
J =

[
−1.5 −0.5
1.33 0.33

]
P =

[
0.34 1.13
1.43 −0.01

]
Qa =

[
−0.19 −0.26
0.24 0.39

]
The results of the simulation are shown in Figs. 1-2. The
input is the estimate control signal ẑ(t) and initial condi-
tions are x(0) = [1 0 2 1]. Fig. 1 shows the dynamical
behavior of the states and Fig. 2 shows the estimated
control signals.

0 5 10 15

Time(s)

-1

-0.5

0

0.5

1

1.5

2

x1GDO

x1PO

(a) x1

0 5 10 15

Time(s)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

x2GDO

x2PO

(b) x2

0 5 10 15

Time(s)

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

x3GDO

x3PO

(c) x3

0 5 10 15

Time(s)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x4GDO

x4PO

(d) x4

Fig. 1. Stabilization of the state.
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Fig. 2. Estimate of z

6.2 Example 2

This case is a stable descriptor system of the form (30) to
determinate the not measured state. The main purpose of
this example is to show the performance of a minimum
order GFO and a minimum order PFO in presence of
parametric uncertainties. The matrices of the system are

E =

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 A =

−1 0 2 −3
0 −2 −1 −2
1 0 −1 −3
2 0 6 −2


B =

 1
0
0
0

 C =

[
0 1 0 0
0 0 1 0
0 0 0 1

]
L = [ 1 0 0 0 ]

In order to make a minimum order observer, we choose
R = L. The GFO parameter matrices are determined by
following Algorithm 1, which gives us

N = −262.17, J = 1451.6, Q = [0.11 0 −0.47 0.22] ,
H = 0.85, S = 145.78, V = −1493.9, P = 0.91,
F = [111.13 0 −723.09 220.37] ,
M = [−62.09 0 404.96 −124.19] .

For the proportional case we choose R = L, the observer
matrices are

N = −0.69, J = 1, Fa = [0 2.79 −3.37]
P = 1, Qa = [0 −0.03 0]



To evaluate the performances of the observers, an uncer-
tainty ∆A(t) is added to the matrix A, then we obtain

the matrix (A + ∆A(t)) where ∆A(t) =

1 0 0 0
0 1 0 0
0 1 0 0
0 0 0 0

 δ(t).
The results of the simulation are shown in Figs 4. The
input is taken constant with u(t) = 1 and initial conditions
x(0) = [1 0 2 4].
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Fig. 3. Uncertainty factor δ(t)
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Fig. 4. Results for example 2

7. CONCLUSION

A generalized functional observer for descriptor systems is
proposed. Stability conditions are given in order to ensure
asymptotically convergence of the estimation error. The
observer gains are easily computed by solving a set of
linear matrix inequalities. An algorithm is provided in
order to highlight the main steps involved in the functional
observer design. The main contribution of this work is
that the proposed functional observer can be configured as
a proportional functional observer for descriptor systems
or for conventional LTI systems by considering E = I
in system (1). A great advantage of this general repre-
sentation is the variety of applicability in different tasks.
For instance, a proportional observer can be enough for
stabilizing unstable systems via feedback control. However
the integral term of the observer could be necessary when
steady state errors affects the desired estimated functions.
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