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Abstract: In this paper we provide a discontinuous integral controller for systems in normal
form and having relative degrees two and three. This controller is insensitive to matched
Lipschitz perturbations, i.e. with bounded derivative. The closed loop system is designed to
be homogeneous and we prove the global finite time stability of the equilibrium point by
constructing explicitly a homogeneous and smooth Lyapunov function.
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1. INTRODUCTION

In the literature there exist several techniques Khalil
(2002) to design (continuous) state feedback controllers
v = k(x), which are able to stabilize the origin of the
system

ẋ =f(x) + g(x)(v + ρ(t)), (1)

in the absence of persistently acting perturbations or
uncertainties ρ(t). An important approach uses Lyapunov
functions for the design. In the presence of non vanishing
perturbations, asymptotic stability of the origin is not
achievable and the best to be expected is to obtain
”practical” stability or Input-to-State Stability (ISS) with
respect to ρ(t). This kind of uncertainties/perturbations
appear naturally in the modeling, since it is essentially
impossible to know the exact value of all parameters of
and even the exact form of the model. Moreover, the
parameters can vary with time, as e.g. the gravity term
in mechanical systems Fujishiro et al. (2016).

Full compensation of (bounded and matched) persistent
perturbations/uncertainties can be achieved by means of
classical or Higher Order Sliding Mode control Fridman
L. and A. Levant (2002); Levant (2005)]. However, the
main disadvantage of this discontinuous controllers is the
presence of the ”chattering” phenomenon, caused by the
high frequency switching.

An alternative classical tool in control theory to deal with
(constant) perturbations is the use of integral action, as
e.g. in the classical PID control Khalil (2002). Based on
this tool, Moreno (2016) and Kamal et al. (2016) propose
a discontinuous integral controller, characterized by the
fact that the integral action is discontinuous, and that is
able to perfectly compensate not only constant pertur-
bations, but a much more general class of perturbations:
Lipschitz perturbations. The control signal is continuous
in these algorithms and therefore the effect of chattering
caused by the discontinuity is strongly attenuated. The
aim of this paper is to extend this idea to an arbitrary
order. The main difficulty of this extension is the tech-

nical proof of its convergence. In this work we construct
explicitly a homogeneous, strong and smooth Lyapunov
function for systems in the normal form with relative
degrees two and three. However, the technique can be
extended without problem to an arbitrary relative degree.

1.1 Problem Statement

In this paper, we consider a system in the (nonlinear)
controller of the form

ẋi =xi+1, i = 1, ..., n− 1,

ẋn =f(x, t) + ρ(t) + v,
(2)

where x ∈ Rn are the states, v ∈ R is the control variable,
f(x, t) is known and corresponds to the nominal system,
while the term ρ(t) represents uncertainties and/or cou-
pled perturbations.

Our aim is to asymptotically stabilize the origin of system
(2), despite of the perturbations. We can first cancel the
known dynamic terms, what can be achieved with the
feedback control law v = u−f(x, t). After this the system
becomes

ẋi =xi+1, i = 1, ..., n− 1,

ẋn =u+ ρ(t),
(3)

where u ∈ R is the new control input. Note that, since
ρ(t) is an unknown perturbation term, it cannot be (fully)
canceled. The presence of this perturbation does not
permit to asymptotically stabilize the origin of system
with a static continuous feedback control, especially in
the case it is not vanishing, i.e. x = 0 9 ρ(t) = 0.

In the absence of perturbation, i. e. ρ = 0, a memoryless
continuous state feedback u = k(x) can stabilize the
origin, but this it is not possible with perturbation,
because the control at the origin is zero, i.e. k(0) =
0, while the perturbation is still acting. So we add
the integral action, which compensates the perturbation
allowing to stabilize the origin of system (3), despite of
Lipschitz perturbations.

We consider the control law as
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u =φ(x) + z,

ż =ψ(x),
(4)

where φ(x) and ψ(x) are homogeneous. Likewise, ho-
mogeneity degree of ψ(x) is zero, where we obtain a
discontinuous integral control, note that despite to this,
the control law (4) is a continuous signal.

1.2 Overview

In this paper we present a controller able to stabilize the
origin of system (2) in finite time, compensating matched
Lipschitz perturbations, for systems of relative degrees
(order) 2 and 3. In section 2, we present some tools to
obtain the main result. In Section 3 we present the main
result, consisting in two theorems 3 and 4, which propose
a controller able to stabilize the system (3) for n = 2, 3
respectively. In the section 4 we will prove the theorems
based on the explicit construction of Lyapunov functions.
At the end, we will present a simulation example for
a system of order 3 in section 5, where we will show
the advantage to add the integral action on the nominal
controller.

2. PRELIMINARIES

Let vector x ∈ Rn, its dilation operator is defined ∆r
ε :=

(εr1x1, ..., ε
rnxn), ∀ε > 0, where ri > 0 are the weights of

the coordinates and r is the vector of weights. A function
V : Rn → R (respectively, a vector field f : Rn → Rn,
or vector-set F (x) ⊂ Rn) is called r-homogeneous of
degree m ∈ R if the identity V (∆r

ε) = εmV (x) holds (or
f(∆r

εx) = εm∆r
εf(x), F (∆r

εx) = εm∆r
εF (x)), [Baccioti

and Rosier (2005)], [Moreno (2016)]. Suppose that the
vector r and dilation ∆r

ε are fixed. The homogeneous

norm is defined by ||x||r,p :=
(∑n

i=1 |xi|
p
ri

) 1
p

, ∀x ∈ Rn,

for any p ≥ 1. The set S = {x ∈ Rn : ||x||r,p = 1} is
the unit sphere. Homogeneous functions and vector fields
have interesting properties. Consider V1 and V2 two r-
homogeneous functions (respectively, a vector field f1)
of degree m1, m2 (and l1), then [Baccioti and Rosier
(2005)]: (i) V1V2 is homogeneous of degree m1 +m2, (ii)
There exist a constant c1 > 0, such that V1 ≤ c1 ||x||m1

r,p ,
moreover if V1 is positive definite, there exists c2 such that
V1 ≥ c2 ||x||m1

r,p , (iii) ∂V1(x)/∂xi is homogeneous of degree

m1 − ri, (iv) LfV1(x) is homogeneous of degree m1 + l1.
Likewise, we recall the following well-known property of
continuous homogeneous functions

Lemma 1. Let η : Rn → R and γ : Rn → R+ be
two continuous homogeneous functions, with weights r =
(r1, ..., rn) and degrees m, with γ(x) ≥ 0, such that the
following holds

{x ∈ Rn \ {0} : γ(x) = 0} ⊆ {x ∈ Rn \ {0} : η(x) < 0},
then, there exists a real number λ∗ such that, for all
λ > λ∗, for all x ∈ Rn\{0} and some c > 0, η(x)−λγ(x) <
−c ||x||mr,p. [Andrieu et al. (2008)], [Moreno (2016)]

The last lemma can be extended to discontinuous case,
where it is possible to bound the discontinuous homo-
geneous function by a continuous homogeneous function
and applying the lemma 1.

Homogeneous systems also have important properties, as
local stability implies global stability and its homogeneity

degree says the kind of stability [Baccioti and Rosier
(2005)]: (i) l < 0 implies finite time stability, (ii) l = 0
exponential stability, (iii) l > 0 rational stability.

Finally we recall Young´s inequality

Lemma 2. For any positive real numbers a > 0, b > 0,
c > 0, p > 1 and q > 1, with 1

p + 1
q = 1, the following

inequality is always satisfied [Hardy et al. (1951)]

ab ≤ cp a
p

p
+ c−q

bq

q
.

Along this paper we use the following notation. For a
real variable z ∈ R and a real number p ∈ R the
symbol dzcp = |z|p sign (z) is the signed power p of z.

According to this dzc0 = sign (z), d
dz dzc

m
) = m |z|m−1

and d
dz |z|

m
= m dzcm−1

. Note that dzc2 = |z|2 sign 6=
z2, and if p is an odd number then dzcp = zp and |z|p = zp

for any even integer p. Moreover dzcp dzcq = |z|p+q,
dzcp dzc0 = |z|p and dzc0 dzcp = |z|p.

3. MAIN RESULT: INTEGRAL CONTROLLER

Let system (3) with homogeneity degree d ≥ − 1
n+1 and

the vector of weights r = (r1, ..., rn), we consider r1 = 1
and therefore ri = ri−1 + d = 1 + (i− 1)d, i = 2, ..., n+ 1.
From [Cruz-Zavala and Moreno (2017)], we know that
next nonlinear homogeneous state feedback control law

u = −kn
⌈
dxnc

1
rn + k̄n−1 dxn−1c

1
rn−1 + ...+ k̄1x1

⌋rn+1

, (5)

stabilizes the origin of system (3), where k̄i =
n−1∏
j=i

k
1

rj+1

j .

Note that if d = 0, we obtain a lineal state feedback
controller, but this controller only achieves exponential
stability.

For the main result, we consider d = − 1
n+1 . Also we just

present the case n = 2, 3. However, the general case n > 3
it is analogous and the proofs will be showed in Section
4.

3.1 Integral Controller: Case n = 2

The system (3), for the case n = 2 becomes

ẋ1 =x2,

ẋ2 =u+ ρ(t),
(6)

with homogeneity degree d = − 1
3 and weights r =

(
1, 2

3

)
.

From (5) we can build the nonlinear homogeneous state
feedback control law

u = −k2

⌈
dx2c

3
2 + k

3
2
1 x1

⌋ 1
3

,

which stabilizes the origin of system (6) in finite time.

Theorem 3. Consider the plant (6) and a coupled Lip-
schitz continuous perturbation ρ(t) with Lipschitz con-
stant L. Then the control law

u =− k2

⌈
dx2c

3
2 + k

3
2
1 x1

⌋ 1
3

+ z,

ż =− kI1
⌈
x1 + kI2 dx2c

3
2

⌋0

,

(7)

stabilizes the origin in finite time for any kI2 and appro-
priate gains k1, k2, kI1.



The Theorem 3 shows that adding a discontinuous in-
tegral term, the controller compensates the Lipschitz
perturbation. After a finite time, z(t) = −ρ(t) cancels
perturbation and therefore the designed controller is ables
to stabilize the perturbed system like the nominal system.

3.2 Integral Controller: Case n = 3

The system (3), for the case n = 3 becomes

ẋ1 =x1,

ẋ2 =x2,

ẋ3 =u+ ρ(t),

(8)

with homogeneity degree d = − 1
4 and weights r =(

1, 3
4 ,

1
2

)
. From (5) we can build the nonlinear homoge-

neous state feedback control law

u = −k3

⌈
dx3c2 + k2

2 dx2c
4
3 + k2

2k
4
3
1 x1

⌋ 1
4

which stabilizes the origin of system (8) in finite time.

Theorem 4. Consider the plant (8) and a coupled Lip-
schitz continuous perturbation ρ(t) with Lipschitz con-
stant L. Then the control law

u =− k3

⌈
dx3c2 + k2

2 dx2c
4
3 + k2

2k
4
3
1 x1

⌋ 1
4

+ z,

ż =− kI1
⌈
x1 + kI2 dx2c

4
3 + kI3 dx3c2

⌋0

,

(9)

stabilizes the origin in finite time for any kI2, kI3 and
appropriate gains k1, k2, k3, kI1.

Again the Theorem 4, show that adding a discontinuous
integral term, the controller compensates the Lipschitz
perturbation. Note that in both controllers, the principal
state to cancel the perturbation is the first state x1, since
other states converge to zero.

Note that by homogeneity of system in both cases, if
the gains (k1, k2, k3, kI1, kI2, kI3) reach the objective
for a perturbation with Lipschitz constant L, then the

gains (λ
1
r1 k1, λ

1
r2 k2, λ

1
r3 k3, λ

1
r1 kI1, λ

1
r2 kI2, λ

1
r3 kI3) will

also stabilize the system for a perturbation with Lipschitz
constant λL, for any λ > 0.

4. LYAPUNOV FUNCTION

We will proof, by using homogeneous and smooth Lya-
punov Functions that Theorems 3 and 4 are valid.

4.1 Proof of Theorem 3

Consider the closed loop system of plant (6) with the
controller (7), and a new variable x3 = z + ρ(t)

ẋ1 =x2,

ẋ2 =− k2

⌈
dx2c

3
2 + k

3
2
1 x1

⌋ 1
3

+ x3,

ẋ3 ∈ − kI1
⌈
x1 + kI2 dx2c

3
2

⌋0

+ [−L,L],

(10)

We define the variable

ξ1 = x1 − k−3
2 k

− 3
2

1 dx3c3 ,
and its derivative

ξ̇1 ∈ x2 + 3k−3
2 k

− 3
2

1 |x3|2
(
kI1

⌈
x1 + kI2 dx2c

3
2

⌋0
− [−L,L]

)
,

Consider the homogeneous and smooth Lyapunov func-
tion, proposed in [Cruz-Zavala and Moreno (2017)], but
with ξ1

V (x) =
γ1

m
|ξ1|m +

2

3m
|x2|

3m
2 + k

3m−2
2

1 dξ1cm−
2
3 x2+(

1− 2

3m

)
k

3m
2

1 |ξ1|m +
1

3m
|x3|3m, γ1 > 0,

where m ≥ r1 + r2 = 5
3 . From Lemma 2 it is easy to show

that V is a positive definite function.

Its derivative along the trajectories of system (10) is

V̇ (x) = F1(x) + F2(x, L),

where

F1(x) =

[(
γ1 +

( 3m− 2

3

)
k

3m
2

1

)
dξ1c

m−1
+( 3m− 2

3

)
k

3m−2
2

1
|ξ1|

3m−5
3 x2

]
x2−

k2

(
dx2c

3m−2
2 + k

3m−2
2

1
dξ1c

3m−2
3

)
α(x),

α(x) =

⌈
dx2c

3
2 + k

3
2
1
ξ1 + k

−3
2
dx3c

3

⌋ 1
3
− k−1

2
x3,

F2(x, L) =

(
3k

−3
2
k
− 3

2
1

(
γ1 +

( 3m− 2

3

)
k

3m
2

1

)
dξ1c

m−1
+

(3m− 2)k
−3
2
k

3m−5
2

1
|ξ1|

3m−5
3 x2 − dx3c

3(m−1)

)
|x3|

2×(
kI1

⌈
ξ1 + kI2 dx2c

3
2 + k

−3
2
k
− 3

2
1
dx3c

3

⌋0

− [−L,L]

)
,

Consider first F1, we recall the term α(x)

α(x) =
⌈
dx2c

3
2 + k

3
2
1 ξ1 + k−3

2 dx3c3
⌋ 1

3

− k−1
2 x3,

so we can write α(x) as

α(x) =
⌈
dx2c

3
2 + k

3
2
1 ξ1 + k−3

2 dx3c3
⌋ 1

3

−
⌈
k−3

2 dx3c3
⌋ 1

3

,

which satisfies (see Appendix A)

sign
(
α(x)

)
=sign

(
dx2c

3
2 + k

3
2
1 ξ1

)
.

Likewise, it is easy to see that

sign
(
dx2c

3
2 + k

3
2
1 ξ1

)
= sign

(
dx2c

3m−2
2 + k

3m−2
2

1 dξ1c
3m−2

3

)
,

for some x, y ∈ R and any β > 0

x+ y > 0⇔xβ + yβ > 0,

x+ y = 0⇔xβ + yβ = 0,

x+ y < 0⇔xβ + yβ < 0,

Therefore, the last term in F1(x) is negative semidefinite

and it is zero only on the set S1 =
{
x2 = −k1 dξ1c

2
3

}
.

On S1 the value of F1 becomes

F1|S1
= −k1γ1 |ξ1|m−

1
3 ,

which is negative for k1 > 0. Using Lemma 1 it follows

that F1 < −c ||(ξ1, x2)||
3m−1

3
r,p for k2 sufficiently large.

Note that F1(x) = 0 only on the set S2 = {(ξ1, x2) = 0}.
Then, the value of F2 on S2 is

F2|S2 = −(kI1 − L) |x3|3m−1

which is negative for kI1 > L. Again, Lemma 1 implies
that V̇ < 0 for kI1 and L sufficiently small.



4.2 Proof of Theorem 4

The proof of Theorem 4 is analogous as well as for the
case n arbitrary, since the methodology is the same.

Consider the closed loop system of plant (8) with the
controller (9), and an additional variable x4 = z + ρ(t)

ẋ1 = x2,

ẋ2 = x3,

ẋ3 = −k3

⌈
dx3c2 + k2

2 dx2c
4
3 + k2

2k
4
3
1 x1

⌋ 1
4

+ x4,

ẋ4 ∈ − kI1
⌈
x1 + kI2 dx2c

4
3 + kI3 dx3c2

⌋0

+ [−L,L],

(11)

we define the variable

ξ1 = x1 − k−4
3 k−2

2 k
− 4

3
1 dx4c4 ,

and its derivative

ξ̇1 ∈x2 + 4kξ|x4|3
(
kI1

⌈
x1 + kI2 dx2c

4
3 + kI3 dx3c2

⌋0
− [−L,L]

)
,

kξ =k−4
3 k−2

2 k
− 4

3
1 ,

We define the function based in [Cruz-Zavala and Moreno
(2017)],

V2(ξ1, x2) =
γ1

m
|ξ1|m +

2

3m
|x2|

4m
3 + k

4m−3
3

1 dξ1cm−
3
4 x2+(

1− 3

4m

)
k

4m
3

1 |ξ1|m, γ1 > 0,

where these terms are equivalent to the four first terms
in the Lyapunov function for the case n = 2. Now the full
Lyapunov function is

V (x) =γ2V2(ξ1, x2) +
1

2m
|x3|2m + k2m−1

2

⌈
dx2c

4
3 + k

4
3
1 ξ1

⌋m− 1
2
x3+(

1−
1

2m

)
k2m2

∣∣∣ dx2c 43 + k
4
3
1 ξ1

∣∣∣m +
1

4m
|x4|4m , γ2 > 0.

Again, from Lemma 2 it is easy to show that V (x) is a
positive definite function.

Its derivative along the trajectories of system (11) is

V̇ (x) = F1(x) + F2(x, L),

where

F1(x) =γ2

(
∂

∂ξ1
V2(ξ1, x2)x2 +

∂

∂x2
V2(ξ1, x2)x3

)
+(

m−
1

2

)
k
2m−1
2

∣∣ dx2c 43 + k
4
3
1
ξ1

∣∣m− 3
2×( 4

3
|x2|

1
3 x3 + k

4
3
1
x2

)(
x3 + k2

⌈
dx2c

4
3 + k

4
3
1
ξ1

⌋ 1
2
)
−

k3

(
dx3c

2m−1
+ k

2m−1
2

⌈
dx2c

4
3 + k

4
3
1
ξ1

⌋m− 1
2
)
α(x)

α(x) =

⌈
dx3c

2
+ k

2
2 dx2c

4
3 + k

2
2k

4
3
1
ξ1 + k

−4
3
dx4c

4

⌋ 1
4
− k−1

3
x4

F2(x, L) =

(
γ24kξ

∂

∂ξ1
V2(ξ1, x2) +

(
4m− 2

)
k
−4
3
k
2m−3
2

∣∣ dx2c 43 + k
4
3
1
ξ1

∣∣m− 3
2(

x3 + k2

⌈
dx2c

4
3 + k

4
3
1
ξ1

⌋ 1
2
)
− dx4c

4(m−1)

)
|x4|

3×(
kI1

⌈
x1 + kI2 dx2c

4
3 + kI3 dx3c

2

⌋0

− [−L,L]

)

Consider first F1, where we recall α(x)

α(x) =

⌈
dx3c2 + k22 dx2c

4
3 + k22k

4
3
1 ξ1 + k−4

3 dx4c4
⌋ 1

4
− k−1

3 x4,

we can write as

α(x) =

⌈
dx3c2 + k22 dx2c

4
3 + k22k

4
3
1 ξ1 + k−4

3 dx4c4
⌋ 1

4
−
⌈
k−4
3 dx4c4

⌋ 1
4

and therefore

sign
(
α(x)

)
=sign

(
dx3c2 + k2

2 dx2c
4
3 + k2

2k
4
3
1 ξ1

)
.

Again, it is easy to see that

sign
(
dx3c2 + k2

2 dx2c
4
3 + k2

2k
4
3
1 ξ1

)
=

sign

(
dx3c2m−1

+ k2m−1
2

⌈
dx2c

4
3 + k

4
3
1 ξ1

⌋m− 1
2

)
.

Therefore, the last term is negative semidefinite. It is zero

only on the set S1 =
{
x3 = −k2

⌈
dx2c

4
3 + k

4
3
1 ξ1

⌋ 1
2
}

. On

S1 the value of F1 becomes

F1|S1 =γ2

(
∂

∂ξ1
V2(ξ1, x2)x2 − k2

∂

∂x2
V2(ξ1, x2)

⌈
dx2c

4
3 + k

4
3
1
ξ1

⌋ 1
2
)

Note that x3 in S1 becomes into controller for the reduced
system of order 2, so it is easy to show that F1|S1

is
negative for k2 large enough. Therefore, using Lemma

1 it follows that F1 < −c ||(ξ1, x2, x3)||m−
1
4

r,p for k3, k2

sufficiently large and k1 > 0.

Again F1(x) = 0 only on the set S2 = {(ξ1, x2, x3) = 0}.
Then the value of F3 on S2 is

F3|S2 = −(kI1 − L) |x4|4m−1

which is negative for L < kI1. Again, Lemma 1 implies
that V̇ < 0 for k11 and L sufficiently small.

We can see that it is possible to extend this result for any
n.

5. SIMULATION EXAMPLE

Fig. 1. Magnetic Supension

Consider the dynamic of a magnetic suspension system
[Khalil (2002)]

ẋ1 = x2

ẋ2 = − k
m
x2 −

kL
2m

x2
3

(a+ x1)2
+ g

ẋ3 =
1

L(x1)

(
−Rx3 + kL

x2x3

(a+ x1)2
+ u
)



where x1 = y ∈ R+ is the vertical distance of the ball
measured from the coil, x2 = ẏ is the velocity, m is
the mass of the ball, g is the gravity acceleration, K is
a viscous friction coefficient, L(x1) = L1 + KL

a+x1
is the

inductance of the coil (where kL, L1 and a are positive
constants), x3 = i is the electric current, R is the electric
resistance on the circuit and the control u is the voltage
applied. Note that model is local.

We consider the input

u = Rx3 − kL
x2x3

(a+ x1)2
+ L(x1)v,

and we obtain

ẋ1 = x2,

ẋ2 = − k
m
x2 −

kL
2m

x2
3

(a+ x1)2
+ g,

ẋ3 = v,

Let h(x) = x1 output of the system and the diffeomor-
phism well defined for x3 > 0

z = T (x) =

h(x)

ḣ(x)

ḧ(x)

 =


x1

x2

− k
m
x2 −

kL
2m

x2
3

(a+ x1)2
+ g

 ,
Therefore, the system in these coordinates becomes

ż =


z2

z3

− k
m
z3 −

√
2kL
m

⌈
g − k

mz2 − z3

⌋ 1
2

(a+ z1)
v

 ,
We define the input

v =−
√

m

2kL

(a+ z1)⌈
g − k

mz2 − z3

⌋ 1
2

( k
m
z3 + w

)
,

and the obtained system is

ż =

[
z2

z3

w + ρ(t)

]
,

where ρ(t) means a perturbation, due to uncertainties
about model of system like gravity, mass, et al. Likewise,
it is possible to suppose that there exists a external force
on environment.

Now, we can apply the integral control to system in z. We
consider the following parameter values m = 1[kg], g =
9.815[ms2 ], k = 0.1[N ·sm ], L1 = 0.1[H], kL = 10[mH · m],
a = 0.05[m], R = 10[Ω], with a perturbation ρ(t) = 0.15t
and the initial conditions x1(0) = 0.001[m], x2 = 0[ms ],
and x3 = 2.2[A]. Then integral control becomes

w = −k3
⌈
dz3c2 + k22 dz2c

4
3 + k22k

4
3
1 z1

⌋ 1
4
+ z4,

ż = −kI1
⌈
z1 + kI2 dz2c

4
3 + kI3 dz3c2

⌋0
,

and system in closed loop is

ż1 =z2,

ż2 =z3,

ż3 =u+ z4,

ż4 =− kI1
⌈
z1 + kI2 dz2c

4
3 + kI3 dz3c2

⌋0

+ ρ̇(t),

where z4 = z + ρ(t).

For simulations we use gains k1 = 2, k2 = 9, k3 = 45,
kI1 = 0.5, kI2 = kI3 = 0.

The behavior of the states is presented in Figures 2-4. In
Figure 2 the evolution of the position is showed, where
the integral controller brings the position to zero in finite
time, later the position change to x1 = 10 cm, and finally
position follow a sinewave, while the state feedback has
problems with the rising perturbation and it is not able
to keep the ball on track.

Fig. 2. Time evolution of position (x1)

Likewise, Figure 3 shows the behavior of the tracking
error, where the integral controller converges to zero.
while the state feedback diverges to infinity after a time.

Fig. 3. Time evolution of tracking error

Figure 4 shows the behavior of the velocity, for the inte-
gral controller which remains close to zero in regulation
case and before it has a sinusoidal behavior. However, in
state feedback case the velocity is unstable.

Fig. 4. Time evolution of velocity (x2)

Figure 5 presents the evolution of the current, which
converges to necessary values to lift the ball and again



has a sinusoidal behavior for up-down the ball. In other
hand, the state feedback controller is not able to keep the
ball on track, this implies a variation in current.

Fig. 5. Time evolution of current (x3)

Finally, Figure 6 shows the behavior of input. For the
integral controller, we can see that the input converges
to necessary voltage to generate the current and an
additional value to compensate the perturbation. While
the state feedback can not compensate it, which causes a
input unstable for a large value of the perturbation.

Fig. 6. Time evolution of input (u)

6. CONCLUSION

We present an integral controller, which allows to
deal with coupled perturbations unknown with bounded
derivative (Lipschitz). The homogeneous discontinuous
integral control is able to cancel Lipschitz nondecreasing
perturbations.

The approach of Lyapunov helped us to design a con-
troller insensitive to Lipschitz perturbations. So Extend-
ing the idea of the integral action in the classical PID
controller.

The dynamic controllers are able to compensate not
vanishing perturbations with a continuous control signal
while the static or memoryless controller can not reach
it.
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Appendix A. AUXILIARY PROOF

Consider the function of two real variables

F (x, y) = dx+ ycβ − dycβ , β > 0 .

Suppose that
F (x, y) = 0,

and this implies

dx+ ycβ − dycβ = 0⇔ dx+ ycβ = dycβ ⇔ x+ y = x⇔ y = 0.

Therefore we can conclude that

F (x, y) = 0⇔ y = 0.

Analogously, it is possible to show that

F (x, y) > 0⇔ y > 0, and F (x, y) < 0⇔ y < 0.


