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Abstract: In this paper, an observer for linear parameter varying (LPV) systems, based on
the generalized dynamic observer (GDO) is proposed. The design of the GDO is derived from
the solution of linear matrix inequalities (LMIs) and the solution of the algebraic constraints
obtained from the estimation error analysis. The efficiency of the proposed approach is
illustrated through the estimation of the outlet temperatures of a double pipe heat exchanger.
In this paper, a new observer structure named generalized dynamic observer (GDO) for linear
parameter varying (LPV) systems is proposed. The design of the GDO is derived from the
solution of linear matrix inequalities (LMIs) and the solution of the algebraic constraints
obtained from the estimation error analysis. The efficiency of the proposed approach is
illustrated through the estimation of the outlet temperatures of a double pipe heat exchanger.
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1. INTRODUCTION

A linear parameter varying (LPV) system is a set of
linear state space models that are interpolated trough
an activation function. Commonly, a certain number of
points in the scheduling space are selected forming a
regular grid. At each point, a LTI system is assigned to
describe the dynamic behavior of the local neighborhood.
The study of LPV modeling theory was introduced by
Shamma (1988). It has been increasing in the last decades
and it has other advantages in comparison with a nonlin-
ear model. For instance, it is possible to represent the
nonlinear behavior of a nonlinear system through many
linear submodels that describe different operation points.
These submodels are interpolated through a mechanism
depending of the scheduling variables. If an state variable
is used as scheduling variable, the system is called quasi-
LPV and represents a large class of nonlinear systems.
There are works that have focused on the design and
implementation of algorithms for estimation and control
for LPV systems.

Advanced observer techniques for LPV systems have been
reported in the literature such as proportional and in-
tegral observers by Hamdi et al. (2011), sliding mode
observers by Pakki et al. (2014), descriptor observers
by López-Estrada et al. (2015), generalized dynamic ob-
servers by Osorio-Gordillo et al. (2015) and adaptive ob-
servers by Nguyen et al. (2015) used for fault estimation to
determine the type, size and shape of the fault interested,
which is a useful information for fault tolerant control.

In control and estimation schemes it is assumed that the
state vector is measured. However in a practical case, this
assumption is not always fulfilled. Therefore, there exists
the necessity of estimate these variables with an observer.

In the design of observers for LPV systems there are a lot
of works that solve the estimation issue. In Sename et al.
(2013); Bara et al. (2000); Daafouz et al. (2000); Stilwell
and Rugh (1999) a proportional observer (PO) for LPV
system is proposed. On the other hand the estimation
task is boarded by proportional integral observers (PIO),
as is made in Youssef et al. (2014); Hamdi et al. (2011);
Ichalal et al. (2009).

The objective of the estimation is to get the estimation
error equals to zero in steady state. In a PO there always
exists a static estimation error in presence of constant
perturbations, this consideration is solved with an integral
term provided by the PIO to deal with the effect of the
perturbation in the estimation error. The integral term is
conformed by the difference between the estimated output
and the system output and an integral gain.

In Osorio-Gordillo et al. (2016, 2015) and Gao et al.
(2016) a new structure of observer called generalized
dynamic observer (GDO) was developed. This structure
is inspired by Goodwin and Middleton (1989); Park et al.
(2002) which add additional dynamics in the observer
introducing a new alternative for state estimation. The
PIO and GDO have the same characteristic of cancel
the effect of the disturbance in the estimation error
in the steady state. The main difference between these
structures is the additional dynamics in the observer and
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the degrees of freedom added to the structure. In the PIO
it is possible manipulate just one matrix, while the GDO
has two available matrices that allows of achieving steady
state accuracy and improve robustness in estimation
error against disturbances and parametric uncertainties.
The practical contribution of this paper focuses in the
application of the proposed method to a realistic model
of a heat exchanger.

2. PRELIMINARIES

Throughout this paper, ‖.‖ denotes the Euclidean norm.
Let W a subset of vector space V . Then, we define the left
orthogonal complement W⊥ by W⊥ = {x ∈ V : xT y =
0 for all y ∈W}.
The following lemma will be used in the sequel of this
paper.

Lemma 1 : Skelton et al. (1997) Let matrices B and

Q = QT be given. Then the following statements are
equivalent:

i) There exists a matrix X satisfying.

BX + (BX )
T

+Q < 0

ii) The following conditions holds.

B⊥QB⊥T < 0 or BBT > 0

suppose the above statements hold and further assume
that BTB > 0. Then all matrices X in statement i) are
given by

X = −σBT +
√
σLϑ1/2

where L is any matrix such that ‖L‖ < 1 and σ > 0 is
any scalar such that

ϑ , σBBT −Q > 0

3. PROBLEM FORMULATION

Let us consider the following LPV system

ẋ(t) =A(ρ(t))x(t) +B(ρ(t))u(t) (1a)

y(t) =Cx(t) (1b)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm the
input vector, y(t) ∈ Rp represents the measured output
vector and ρ(t) ∈ Rj is a varying parameter vector. It is
assumed that all parameters ρ = {ρ1 . . . ρj} are bounded,
measurable and their values remain in a convex polytope
of M vertices as in Rodrigues et al. (2007). The LPV
system (1) can be rewritten as the following polytopic
representation:

ẋ(t) =

M∑
i=1

µi(ρ(t))(Aix(t) +Biu(t)) (2a)

y(t) =Cx(t) (2b)

where
M∑
i=1

µi(ρ(t)) = 1, 0 ≤ µi(ρ(t)) ≤ 1 (3)

∀i ∈ [1, . . . ,M ] where M = 2j . µi(ρ(t)) = µ(ρi, ρi, ρi(t), t)

(ρi) and ρ
i
) represent the maximum and minimum value

of ρi respectively).

Now, let us consider the following GDO for system (2)

ζ̇(t) =

M∑
i=1

µi(ρ(t))(Niζ(t) +Hiv(t) + Fiy(t) + Jiu(t))

(4a)

v̇(t) =

M∑
i=1

µi(ρ(t))(Siζ(t) + Liv(t) +Miy(t)) (4b)

x̂(t) = Pζ(t) +Qy(t) (4c)

where ζ(t) ∈ Rq0 represents the state vector of the
observer, v(t) ∈ Rq1 is an auxiliary vector and x̂(t) ∈
Rn is the estimate of x(t). Matrices Ni, Hi, Fi, Si,
Li, Mi, P and Q are unknown matrices of appropriate
dimensions which must be determined such that x̂(t)
converges asymptotically to x(t).

Remark 1 : The GDO (4) is in a generalized form. In fact:

• For Hi = 0, Si = 0, Mi = 0 and Li = 0 the observer
reduces to the PO for LPV systems.

ζ̇(t) =

M∑
i=1

µi(ρ(t))(Niζ(t) + Fiy(t) + Jiu(t))

x̂= Pζ(t) +Qy(t)

• For Li = 0, Si = −CP and Mi = −CQ+ I then the
following PIO for LPV systems is obtained

ζ̇(t) =

M∑
i=1

µi(ρ(t))(Niζ(t) +Hiv(t) + Fiy(t) + Jiu(t))

v̇(t) = y(t)− Cx̂(t)

x̂(t) = Pζ(t) +Qy(t)

The following lemma gives existence conditions of the
observer (4).

Lemma 2: There exists an observer of the form (4) for the
system (2) if the following two statements hold

1. There exists a matrix T of appropriate dimension
such that the following conditions are satisfied
(a) NiT + FiC − TAi = 0
(b) Ji = TBi

(c) SiT +MiC = 0
(d) PT +QC = In

2. The matrices
∑M

i=1 µi(ρ(t))

[
Ni Hi

Si Li

]
are Hurtwitz

∀i ∈ [1, . . . ,M ].

Proof. Let T ∈ Rqo×n be a parameter matrix and
consider the transformed error ε(t) = ζ(t) − Tx(t), then
its derivative is given by:

ε̇(t) =

M∑
i=1

µi(ρ(t))(Niε(t) + (NiT + FiC − TAi)x(t)

+Hiv(t) + (Ji − TBi)u(t)) (7)



by using the definition of ε(t), equations (4b) and (4c)
can be written as:

v̇(t) =

M∑
i=1

µi(ρ(t))(Siε(t) + (SiT +MiC)x(t) + Liv(t))

(8)

x̂(t) = Pε(t) + (PT +QC)x(t) (9)

If conditions a-d of Lemma 2 are satisfied, the following
observer error dynamics is obtained from (7) and (8)

[
ε̇(t)
v̇(t)

]
︸ ︷︷ ︸

˙ϕ(t)

=

M∑
i=1

µi(ρ(t))

[
Ni Hi

Si Li

]
︸ ︷︷ ︸

Ai

[
ε(t)
v(t)

]
︸ ︷︷ ︸

ϕ(t)

(10)

From (9), we have

x̂(t)− x(t) = e(t) = Pε(t) (11)

in this case if matrices Ai are Hurtwitz then lim
t→∞

e(t) = 0.

4. GDO DESIGN

4.1 Parameterization of the observer matrices

In this section, we shall give the parameterization of the
algebraic constraint equations of Lemma 2. Let E ∈
Rq0×n be a full row rank matrix such that the matrix

Σ =

[
E
C

]
is of full column rank and let Ω =

[
In
C

]
.

Conditions c and d can be written as:[
Si Mi

P Q

] [
T
C

]
=

[
0
In

]
(12)

the necessary and sufficient condition for equation (12) to
have a solution is:

rank

[
T
C

]
= rank

 TC0
In

 = n (13)

Now, since rank

[
T
C

]
= n, there always exist matrices

T ∈ Rq0×n and K ∈ Rq0×p such that:

T +KC = E (14)

which can be written as:

[ T K ] Ω = E (15)

and since rank(Ω)=rank

[
Ω
E

]
. The particular solution of

equation (15) is given by:

[ T K ] = EΩ+ (16)

Equation (16) is equivalent to:

T = T1 (17)

K = K1 (18)

where T1 = EΩ+

[
In
0

]
and K1 = EΩ+

[
0
Ip

]
. Now,

inserting the equivalence T from (14) into condition (a)
it leads to:

NiE + K̃iC = TAi (19)

where K̃i = Fi − NiK and equation (19) can be written
as: [

Ni K̃i

]
Σ = TAi (20)

The general solution of (20) is given by:[
Ni K̃i

]
= TAiΣ

+ − Zi(In+p − ΣΣ+) (21)

by replacing matrix T from equation (17) into equation
(21) it gives:

Ni =N1,i − ZiN3 (22)

K̃i = K̃1,i − ZiK̃3 (23)

where N1,i = T1AiΣ
+

[
Iqo
0

]
, N3 = (Iqo+p−ΣΣ+)

[
Iqo
0

]
,

K̃1,i = T1AiΣ
+

[
0
Ip

]
, K̃3 = (Iqo+p − ΣΣ+)

[
0
Ip

]
and

Zi are arbitrary matrices of appropriate dimension. As
matrices Ni, T , K, K̃i are known, we can deduce the
matrix Fi as:

Fi = F1,i − ZiF3 (24)

where F1,i = T1AiΣ
+

[
K
Ip

]
, F3 = (In+p − ΣΣ+)

[
K
Ip

]
.

On the other hand from equation (14) we obtain:[
T
C

]
=

[
Iqo −K
0 Ip

]
Σ (25)

inserting equation (25) into the equation (12) we get:[
Si Mi

P Q

] [
Iqo −K
0 Ip

]
Σ =

[
0
In

]
(26)

Since matrix Σ is of full column rank and[
In −K
0 Iny

]−1
=

[
Iqo −K
0 Ip

]
the general solution to equation (26) is given by:[

Si Mi

P Q

]
=

([
0
In

]
Σ+ −

[
U1,i

U2

]
(Iqo+p − ΣΣ+)

)
×[

Iqo K
0 Ip

]
(27)

where U1,i and U2 are arbitrary matrices of appropriate
dimensions. Then matrices Si, Mi, P and Q can be
determined as:



Si =−U1,iN3 (28)

Mi =−U1,iF3 (29)

P = Σ+

[
Iqo
0

]
− U2N3 (30)

Q= Σ+

[
K
Ip

]
− U2F3 (31)

Now, by using (22) and (28) the observer error dynamics
(10) can be rewritten as:

ϕ̇(t) =

M∑
i=1

µi(ρ(t))((Ai − YiA2)ϕ(t)) (32)

where

Ai =

[
N1,i 0

0 0

]
, A2 =

[
N3 0
0 −Iqo

]
, Yi =

[
Zi Hi

U1,i Li

]
.

4.2 Stability analysis

In this section, a method to design a GDO from (4) is pre-
sented. This method is obtained from the determination
of matrix Yi, such that system (32) is stable. The GDO
matrices can be obtained by using the following theorem.

Theorem 1: There exists a parameter matrix Yi such
that the system (32) is asymptotically stable if and only if

there exists a matrix X =

[
X1 X1

X1 X2

]
> 0 where X1 = XT

1

such that the following LMI’s are satisfied.

NT⊥
3

[
NT

1,iX1 +X1N1,i

]
NT⊥T

3 < 0 (33)

Then, by using the elimination lemma matrix Yi is
parameterized as

Yi = X−1(−σBT +
√
σLϑ1/2i )T (34)

where L is any matrix such that ‖L‖ < 1 and σ > 0 is
any scalar such that

ϑi , σBBT −Qi > 0 (35)

with

Qi =

[
X1N1,i +NT

1,iX1 N
T
1,iX1

X1N1,i 0

]
,

B =

[
−NT

3 0
0 Iq

]
.

Proof Consider the following Lyapunov function candi-
date

V (ϕ(t)) = ϕ(t)TXϕ(t) > 0 (36)

with X =

[
X1 X1

X1 X2

]
> 0 and X1 = XT

1 . Its derivative

along the trajectory of (32) is given by

V̇ (ϕ(t)) =

M∑
i=1

µi(ρ(t))ϕ(t)T ((Ai − YiA2)TX +

X(Ai − YiA2))ϕ(t) < 0 (37)

the inequality V̇ (ϕ(t)) < 0 is valid for all ϕ(t) 6= 0 if and
only if

(Ai − YiA2)TX +X(Ai − YiA2) < 0 (38)

which can be written as
M∑
i=1

µi(ρ(t))(BXi + (BXi)
T +Qi) < 0 (39)

where B = −AT
2 and Qi = AT

1,iX +XA1,i and Xi = XYi.
According to elimination lemma there exists a matrix Xi

satisfying (39) if and only if the following condition holds:

B⊥QiB⊥T (40)

with B⊥ =
[
−NT⊥

3 0
]
. By using the definition of matrix

Qi we obtain (33). If (40) is satisfied, the parameter Yi is
obtained as in (34).

5. APPLICATION TO DOUBLE PIPE HEAT
EXCHANGER

In order to illustrate our results, let us consider a double
pipe heat exchanger. It is used for energy exchange
between at least two fluid streams, a hot and a cold
stream. In this case, the hot water flows through the inner
pipe and the cooling water flows through the annular
section (outside of the inner pipe) López-Zapata et al.
(2016).

To obtain a simple model of the heat transfer, the follow-
ing modeling assumptions are used:

A1. Constant volume and mass in the heat exchanger
pipes.

A2. Physico-chemical properties of the fluid are constant.
A3. Global heat transfer coefficient (U) and area (A) are

constant.
A4. There is not heat transfer with the environment.
A5. Inlet temperatures are measured.

The continuous time state equations that represent the
energy balance are given in Eq. (41)

Ṫco(t) =
vc
Vc

(Tci(t)− Tco(t)) +
UAr

cpcρcVc
(Tho(t)− Tco(t))

(41a)

Ṫho(t) =
vh
Vh

(Thi(t)− Tho(t)) +
UAr

cphρhVh
(Tco(t)− Tho(t))

(41b)

where Vc is the volume in external side, Vh is the volume
in the inner side, vc is the flow in the cold stream, vh
is the flow in the hot stream, cpc is the specific heat of
cold water, cph is the specific heat of hot water, ρc is
the density of cold water, ρh is the density of hot water,
Ar is the heat transfer surface area and U is the global
heat transfer coefficient. Tci(t) and Thi(t) are the inlet
temperatures in the cold and hot streams respectively.
Tco(t) and Tho(t) are the outlet temperatures in the cold
and hot streams respectively. Consider the following LPV
system described by (1) where there exist one scheduling
parameters ρ(t) ∈ [0.5× 10−5, 3× 10−5] which represents
the variation of the flow in the hot stream vh. Therefore,
the LPV system is



A(ρ(t)) =

−
UAr

cpcρcVc
− vc
Vc

UAr

cpcρcVc
UAr

cphρhVh
− UAr

cphρhVh
− ρ(t)

Vh

 ,

B(ρ(t)) =


vc
Vc

0

0
ρ(t)

Vh

 , and C = [ 1 0 ] .

Such that the scheduling functions µi(ρ(t)) are

µ1(ρ(t)) =
ρ− ρ(t)

ρ− ρ
(42)

µ2(ρ(t)) =
ρ(t)− ρ
ρ− ρ

(43)

The problem is to estimate the states [ Tco Tho ]
T

by
using the GDO. By solving the LMI’s of Theorem 1 and

choosing the matrix E =

[
1 0
0 1

]
, L =


0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2


and σ = 10 we obtain the following results:

X =

 13.7138 −0.0542 13.7138 −0.0542
−0.0542 11.0021 −0.0542 11.0021
13.7138 −0.0542 27.4277 0
−0.0542 11.0021 0 27.4277



Y1 =

 0.7677 0.0385 −0.6907 0.7677 0.0361
0.1973 0.1967 0.1961 0.1943 0.8055
−0.3100 0.0546 0.4192 −0.6746 0.0570
0.0072 0.0060 0.0048 0.0084 −0.6028



Y2 =

 0.7782 0.0490 −0.6802 0.7782 0.0466
0.5534 0.5528 0.5522 0.5504 1.1616
−0.3141 0.0505 0.4151 −0.6787 0.0529
−0.1215 −0.1227 −0.1239 −0.1203 −0.7315


Finally, we can get all the matrices of the observer as:

N1 =

[
−0.7596 0.0263
0.1144 −0.4539

]
, N2 =

[
−0.7596 0.0263
0.1144 −1.5731

]
,

S1 =

[
0.3646 0
−0.0012 0

]
, S2 =

[
0.3646 0
−0.0012 0

]
,

H1 =

[
0.7677 0.0361
0.1943 0.8055

]
, H2 =

[
0.7782 0.0466
0.5504 1.1616

]

L1 =

[
−0.6746 0.0570
0.0084 −0.6028

]
, L2 =

[
−0.6787 0.0529
−0.1203 −0.7315

]
,

F1 =

[
0.3191
0.1728

]
, F2 =

[
0.3191
0.1728

]
,

M1 =

[
−0.1823
0.0006

]
, M2 =

[
−0.1823
0.0006

]
,
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Fig. 1. Estimation of x1.
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Fig. 2. Estimation of x2.
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Time
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ρ(t)

Fig. 3. Uncertainty α(t) and parameter variant ρ(t).

P =

[
0.5 0
0 1

]
and Q =

[
0.75

0

]
.

The initial condition for the system are x(0) = [45, 80]T

for the GDO are ζ(0) = [26.5, 70]T , v(0) = [0, 0]T and
u(t) = [29, 81]T . To evaluate the performance of the
observers an uncertainty is added in the flow of the cold
stream ∆vc = vc + α(t)vc. The results of the simulation
are depicted the following Figures

6. CONCLUSION

In this paper a generalized dynamic observer for LPV
systems is presented. The conditions for the existence of
the GDO are provided and its stability is proved in form
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Fig. 4. Weighting functions µ1(ρ(t)) and µ2(ρ(t))

of LMIs. In order to illustrate the observer performances,
a double pipe heat exchanger is used. From the simulation
results, it can be seen that the GDO has characteristics of
robustness to certain class of uncertainties in the steady
state regime.
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