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Abstract—In this paper a software sensor is designed in order
to determine the attitude and the angular velocity of a CubeSat
for active attitude control using only the solar panels. It consists
of an algorithm to obtain the raw attitude measurement from
solar panels’ current and a state observer designed based on
contraction theory. Relying on the synchronization as a means
to attenuate the noise, this sensor may recover the “true”
attitude and angular velocity states as the limit of the sensor
performance.
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I. INTRODUCTION

Many space missions perfermed by large satellites currently
may be accomplished by constellation of nano satellites in
order to reduce the cost and increase the mission flexibility.
This requires a precise active attitude controller. For active
attitude control in CubeSats, besides the common require-
ments for a satellite, it necessitates a clean and reliable
acquisition of the attitude and the angular velocity of the
satellite with the additional constraints on weight, space and
power consumption. To solve this problem many techniques
have been developed. Some use deterministic methods as the
case of TRIAD algorithm which was the first and simplest
way to obtain the attitude using two or more measurements
[1]. In [2] the Wahba problem was formulated and its solu-
tions were proposed in order to determine the attitude of a
satellite relied on the singular values decomposition [3]. The
drawback of these methods is their low resolution and high
sensibility to the measurement noise using typical attitude
sensors for navigation. This motivates the need of filtering
the measurements. New techniques have been developed, for
instance, based on the observer theory like Extended Kalman
Filter [4] or complement filter for nonlinear systems designed
with Lyapunov method [5].

In a satellite, an attitude measurement can be acquired with
typical sensors for navigation like IMU (inertial measurement
unit) equipped with gyros, magnetometers and accelerome-
ters. Other attitude sensors like sun sensors or star trackers
are also frequently incorporated. The angular velocity of
the satellite may be obtained with a gyroscope. However,
in CubeSat applications, it is preferable to use lightweight
sensors for the consideration of power consumption, space
and weight.

This paper considers the problem of designing a software
sensor for the attitude and the angular velocity determination
in a CubeSat under the assumption that only the solar panels

are used. It consists of solar panels for CubeSat power gen-
eration, a state estimator [6] and Julian Date calender [7] as
shown in Fig. 1, where V B

s ∈ R3 is the sun vector measured
in the satellite’s body frame, V I

s ∈ R3 is the sun vector
refereed to a inertial frame and qm ∈ R4 is a measurement
of the satellite’s attitude represented in quaternions. First, the
sun vector (V B

s ) is obtained from the current generated by
the solar panels. This vector together with the solar vector
refereed to the inertial frame given by Julian Date (V I

s )
using the algorithm described in [8] is employed to get a
raw measurement of the CubeSats attitude in quaternion qm
using a real-time convex minimization algorithm [9]. Next,
this raw attitude is fed into the state observer, designed based
on contraction theory, to get a cleaner attitude and velocity
estimate. The attenuation of the noise in attitude and velocity
estimated increases as the number of solar panels increases
and in theory, the noise might be completely removed from
the estimate as the sensor performance limit. In practice,
an acceptable level of attenuation of the measurement noise
is achieved with a few solar panels as illustrated in the
simulations.

Precise measurements of the vector V I
s are available thanks

to the Jet Propulsion Laboratory of NASA. However, it is
desirable for reasons of communication bandwidth to use an
algorithm on board to obtain an estimate of sun vector with a
technique developed in the Astronomical Almanac [8]. This
is because while the resource of bandwidth is going less
accessible for the satellite related demand, the computation
power of microprocessors is getting increasing and cheaper
for this kind of applications.

II. PRELIMINARIES

A. Modeling of the Satellite

The dynamics of a satellite actuated by a set of three
perpendicular reaction wheels represented as a rigid body in
the space is described as

Mω̇ = S(RThI)ω + τ, (1)

where M ∈ R3×3, M = MT is the inertia matrix, ω ∈ R3 is
the angular velocity vector, and τ ∈ R3 the applied torque,
all refereed to the satellite body frame {B}, and hI angular
moment refereed to the fixed inertial frame {I}. The matrix

Memorias del Congreso Nacional de Control Automático
2016, Querétaro, México, Septiembre 28-30, 2016

JuBT2.3



Fig. 1. Software Sensor, qm is a measurement of the real quaternion x plus
a zero-mean white noise n.

S(a) defines a skew symmetric matrix for a given vector a =
[a1 a2 a3]T in the following way

S (a) =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 . (2)

The inverse operation is defined as

a = S−1(A) (3)

for a skew symmetric matrix

A =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 . (4)

The attitude of the satellite is represented by the rotation
matrix R ∈ SO(3) = {R ∈ R3×3|RTR = I, det(R) = 1}
with respect to the inertial frame. In this paper, the rotation
matrix is parametrized by quaternions, which is a minimum
singularity-free representation of the rotation matrix [10].

Fig. 2. Spacecraft body frame and inertial frame.

The kinematics model of the satellite under the
parametrization of the attitude using quaternions is described
as

ẋ =
1

2
J(x)ω, (5)

where x denotes a unit quaternion defined as

x =
[
x0 x1 x2 x3

]T
=
[
x0 xTv

]T
, (6)

with J(x) the analytic Jacobian

J(x) =

[
−xTv

x0I3 + S(xv)

]
. (7)

The rotation matrix R and the quaternion are related by the
Rodrigues formula [11]

R = I3 + 2xoS(xv) + 2S(xv)S(xv), (8)

xv = S−1(Rs), Rs =
1

2
√

1 + tr(R)
(R−RT ), (9)

x0 = ±
√

1− xTv xv. (10)

Since x0 = ±1 corresponds to the same rotation matrix R,
to avoid ambiguity the positive sign will be taken.

B. Contraction Theory Tools

The analysis of contraction is motivated by the fact that
talking about stability does not require knowing what a
nominal trajectory nor equilibrium is. Intuitively, a system
is stable in a region in the state space if the initial conditions
or temporary disturbances are somehow ”forgotten”, i.e., if
the final behavior of the system is independent of the initial
conditions. The following contraction and partial contraction
theorems are used for the observer design.

Theorem 1. (Contraction [12]). Consider the nonlinear sys-
tem

ẋ = f(x, t), (11)

where x ∈ Rn is the state vector and f a smooth function. If
the symmetric part of the Jacobian matrix of the system (11)
is uniformly negative definite, i.e., for some λ > 0,

Js =
1

2
(
∂f

∂x
+
∂f

∂x

T

) ≤ −λI, ∀t ≥ 0, (12)

then, the system (11) is contracting with convergence rate
given by λ. Contraction implies that any two trajectories start-
ing from different initial conditions converge exponentially to
each other.

Partial contraction, introduced in [13], is given next.

Theorem 2. (Partial Contraction [13]). Consider a smooth
non-linear system of the form

ẋ = f(x, x, t), (13)

and assume that the virtual system

ẏ = f(y, x, t), (14)

is contracting with respect to y. If a particular solution of
the virtual system verifies a smooth specific property, then
all trajectories of the original x system verifies this property
exponentially.

Partial contraction was a major step towards the application
of the contraction analysis tools to solve control-related prob-
lems. For the observer design, it realizes a top-down approach:
at the top-level, a contracting observer which may include
non-measurable state variables, is first designed to ensure
its desired (contraction) property. Next, the non-measurable
states are substituted with known variables in the bottom-level
in order to get an implementable version of the observers [14],
[15].
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III. PROBLEM FORMULATION AND ATTITUDE/VELOCITY
DETERMINATION

A. Problem Formulation

The problem addressed here is to design a software sensor
using as input the current from solar panels and Julian Date
calender to determine the attitude and angular velocity of a
CubeSat taking into account the measurement noise. First,
the raw attitude is determined using the real-time convex
optimization with input data as the solar panels current
and Julian Date calender. Next, a complete-order observer
for both attitude and angular velocity is designed. Further,
synchronization is employed as a means to attenuate the
measurement noise [15] in the synchronized observer.

B. Attitude Determination

This subsection gives the development of an algorithm that
determines the raw attitude from the the current measurement
generated by the solar panels and Julian Date calender. The
underline idea of the algorithm is as follows: the attitude of
a satellite may be uniquely determined by the sun vectors
obtained from both the body-frame (V B

s ), attached rigidly
on the satellite and the initial-frame (V I

s ) with its center
coincident to the center of the earth, from the relationship

V I
s

‖ V I
s ‖

= R
V B
s

‖ V I
s ‖

+
d

‖ V I
s ‖
≈ R V B

s

‖ V I
s ‖

, (15)

where d is the displacement from body frame to the inertial
frame measured in the inertial frame. It is in the range
of 200 − 2000km for an LEO (Low Earth Orbit) satellite,
which may be ignored compared to the Earth-Sun distance
(about 150 million kilometers). The rotation matrix R will be
obtained with the real-time convex minimization algorithm
[9].

Considering a solar panel as an ideal sun sensor, i.e.,
neglecting the effects of temperature and tear of the panels,
the measured current i is expressed as a function of incidence
angle θ

i = imax cos θ, (16)

where imax is the maximum current that can be generated by
the panel when θ = 0. So, measuring the current generated
by a solar panel, it is possible to get the angle of incidence
of the sun’s rays.

Fig. 3. Representation of the sun vector in body frame (V B
s ) and inertial

frame (V I
s )-

Now, in order to obtain the sun vector V B
s , the standard

algorithm described in [16] will be used. For this purpose,
it is assumed that the CubeSat has at least six non-coplanar
solar panels 1.

Define the normalized currents as
i

imax
= cos θ. (17)

Then the estimated sun vector elements can be written as
[16]2

r̄sun =

 im1

imax
− im4

imax
im2

imax
− im5

imax
im3

imax
− im6

imax

 . (18)

Finally, the vector V B
s is determined by normalizing the

vector r̄sun.
For the determination of the rotation matrix R it is nec-

essary to get a sun vector of the earth measured from the
inertial frame V I

s as shown in equation (15). The current date
in Julian Calender is employed for this purpose. From this the
sun vector r̄� in astronomical units [AU] is obtained, and so
to get the vector V I

s .
Next, the rotation matrix is estimated in real-time. The

real-time convex optimization developed in [9] is used here,
since this technique involves issues regarding to quadratic
programming, well suited for real-time implementation. So,
the problem of finding a estimated rotation matrix (Ry) of the
real rotation matrix (R) turns to be minimizing the following
function

Ry = arg minR∈SO(3)(‖
V I
s

‖ V I
s ‖
−R V B

s

‖ V I
s ‖
‖2) ≈ RI

B ,

(19)
subject to the following restriction

‖ Ry ‖= 1. (20)

In the software sensor, the Convex optimization algorithm
in real-time is implemented using the CV X (Convex Opti-
mization Toolbox) running in Matlab similar to that shown in
[9]. Thus Ry , an estimated R, is obtained. Finally, the trans-
formation from SO(3) to quaternion is performed, obtaining
the raw attitude qm, which is the input to the state observer
designed in the next section.

IV. OBSERVER DESIGN

In this section two observers are described: complete-order
and synchronized observer [6]. Due to the space limitation,
the reader is referred to that paper for their proofs.

A. Complete-order observers

Consider the attitude dynamics (1) and (5). The complete-
observer is given by

˙̄w =
[
S(RThI)−K11J

T
f J
]
ŵ −K11Γ(J − Jf )Tx

+K12(x− x̂) + τ,

˙̄x = (I3 −K21) J(x)ŵ +K22(x− x̂),

1This is always technically possible by a proper design of the solar power
system.

2If more that 6 solar panels are available, the redundant currents will be
used for the synchronized observed described in Subsection IV-B.
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where ŵ = M−1(w̄ + K11J
T
f x)and x̂ = x̄ + K21x and the

gain matrices K11, K12, K21 and K22 are

K11 = KT
11 > 0, (21)

K22 = KT
22 > 0, (22)

K12 = [(I4 −K21)J(x)]
T

= JT (x)(I4 −K21), (23)
K21 = KT

21 = k21I4, k21 < 1. (24)

Thus Jf is defined as

J̇f = (J − Jf )Γ, Jf (0) = J(x(0)), (25)

and Γ = ΓT > 0 the filter gain matrix. For simplicity it is
defined Γ = γI3, with γ > 0 a constant.

The output of the observer is given by

ŵ = M−1(w̄ +K11J
T
f x̂), (26)

x̂ =
1

(1− k21)
x̄. (27)

Theorem 3. The complete-order observer given above is
contracting, i.e., for any initial conditions ŵ(0) and x̂(0), its
trajectory converges exponentially to the trajectory of the real
system provided that λ1 , λmin(K11) − εJλmax(K11) > 0
for some 0 < εJ << 1.

B. Synchronized Observer

In order to prevent the power system from shutting down,
several solar panels are mounted in one face of the satellite.
This method is currently used to increase the amount of stored
solar energy [17]. Taking this advantage, a synchronized
observer, designed by synchronizing a group of complete-
order observers (see, for more details Appendix of [15]) may
attenuate further the effect from the current measurement
noise from the solar panels.

Each observer is fed by an independent measurement of
the attitude acquired by the i-the solar panel xi = x + ni,
with ni white independent Gaussian noise with zero mean.
For i = 1, 2, ..., N and J = J(xi) the synchronized observer
is given by

˙̄wi =
[
S(RThI)−K11J

T
f J
]
ŵi −K11Γ(J − Jf )Txi

+K12(xi − x̂i)−Ks

N∑
j=1

(ŵi − ŵj) + τ, (28)

˙̄xi = (I3 −K21) J(x)ŵi +K22(xi − x̂i)

−Ks

N∑
j=1

(x̂i − x̂j). (29)

with ŵi = M−1(w̄i +K11J
T
f xi) and x̂i = x̄i +K21xi. The

output of the observer is given by

ŵi = M−1(w̄i +K11J
T
f x̂i), (30)

x̂i =
1

(1− k21)
x̄i. (31)

where N is the observers number and Ks = KT
s > 0 is the

coupling gain.

Theorem 4. Consider the synchronized observer (28)-(31).
Let the state estimate be

X̂ = [ŵT x̂T ]T =
1

N

N∑
i=1

X̂i, (32)

with X̂i =
[
ŵT

i x̂T
i

]T
. Then under the same condition as

in Theorem 3, (X̂ − X) → N0(1/N) exponentially, where
N0(1/N) is a neighborhood of the origin with ratio inversely
proportional to 1/N and X is defined similarly as X̂ .

This result establishes a theoretical limit for the observer
performance as the number of synchronized observers N goes
to infinite. In practice, as illustrated in the simulation, a few
complete-order observers need to be synchronized to achieve
an acceptable level of noise attenuation. Although being easily
done for large satellites by mounting more solar panels in each
face, this brings certainly technology challenges for nano-
satellites power system designs.

V. SIMULATION

To show the performance of the proposed software sensor,
several simulations were carried out in an LEO CubeSat
actuated with three perpendicular reaction wheels. First to test
the performance of the complete-order and the synchronized
observer, a noisy quaternion measurement is fed to both the
complete-order and the synchronized observer. Next, to test
the software sensor as a whole system, in the simulation the
algorithm to get the sun vector in the inertial frame V I

s ,
the algorithm to get the sun vector in the body frame V B

s

from the solar panels and the real time convex optimization
algorithm to get a measurement of the attitude in quaternions
were implemented together with the complete-order observer.

The parameters of the satellite for all simulations were:
satellite mass, m = 1.33[kg], dimensions 10cm × 10cm ×
10cm. A constant angular momentum is considered in the
inertial reference system hI = [ 1√

2
1√
2

0]T [kg m2/s].
Given the dimension of the satellite and its geometry , the
inertia matrix was taken as

M =

0.0022 0 0
0 0.0022 0
0 0 0.0022

 [Kg −m2]. (33)

The initial conditions for the satellite were ω(0) =
[0.1 0.15 − 0.15]T [ radseg ] and x(0) = [0.5 0.5 0

√
0.5]T ;

and for the observers ω̂(0) = [0 0 0]T [ radseg ] and
x̂(0) = [1 0 0 0]T . The value of the filter gain was
Γ = 5I4 and gain matrices were K11 = 0.1I3, K22 = 100I3,
K21 = 0.1.

In Fig. 4, it is shown the measurement of the raw attitude
in quaternion qm, given by the sum of the real attitude x
plus a zero-maen Gaussian white noise with power density
0.01. Fig. 5 shows the estimated angular velocity obtained by
the complete-order observer (in color) and the real angular
velocity (in black). Fig. 6 shows the estimated attitude.
Observe that the estimates converge in about two seconds
to the real ones, however, the effect of measurement noise is
noticeable.

Next, a simulation with the synchronized observer was per-
formed. The value of the filter gain and gain matrices were the
same as in the previous simulations. The synchronization gain
was KS = 100. Fig. 7 and Fig. 8 show the estimated angular
velocity and attitude of N = 10 synchronized complete-
order observers. Notice that compared to the complete-order
observer a remarkable improvement in the performance of the
observer is obtained.
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Fig. 4. The raw quaternion obtained by solar panel currents and Julian Date

0 2 4 6 8 10 12 14 16 18 20
−1.5

−1

−0.5

0

0.5

1

1.5

2

Time [seg]

A
ng

ul
ar

 v
el

oc
ity

 [r
ad

/s
eg

]

 

 

ω
e1

ω
e2

ω
e3

ω
real

Fig. 5. Estimated Angular Velocity - Complete-order Observer
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Fig. 6. Estimated Quaternion - Complete-order Observer
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Fig. 7. Estimated Angular Velocity - Synchronized Observer

Finally, the performance of the software sensor as a whole
system is tested using the same set of parameters as in the
previous simulations. In this case the inputs were the solar
panels currents and the Julian Date, from which the sun vector
in the inertial frame and the body frame were calculated first.
Then relying on the real-time convex optimization algorithm
in [9] a raw quaternion measurement was obtained, which
was fed to the observers. The output of this software sensor
are the estimated angular velocity and attitude. Fig. 9 and
10 shown the performance of the software sensor, where the
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Fig. 8. Estimated Quaternion - Synchronized Observer

complete-order observer was employed.
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Fig. 9. Estimated Angular Velocity - Complete System

0 2 4 6 8 10 12 14 16 18 20
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time [seg]

Q
ua

te
rn

io
n

 

 

q
m0

q
m1

q
m2

q
m3

x
0

x
1

x
2

x
3

Fig. 10. Estimated Quaternion - Complete System

VI. CONCLUSION

This paper contributes with a software sensor design to
determine the attitude and the angular velocity for attitude
control in a CubeSat. The input to this sensor are the
solar panels’ currents. The output are the angular velocity
estimate and the attitude estimate. These estimates converge
exponentially to their true values in the noise-free case. When
the measurements are noisy, this result may be achieved as
the number of synchronized observers goes larger.

The main drawback of this software sensor is the need of a
precise satellite model. Estimating both the models parameters
and the state is under research and will be reported in a future
work.

ACKNOWLEDGMENT

The first and the third authors would like to thank the
National Council of Science and Technology (CONACyT) for
the graduate study fellowship. The research is supported in
part by the Grant PAPIIT-UNAM No. IN113615 and SEP-
CONACyT No. 253677.

Memorias del Congreso Nacional de Control Automático 2016, Querétaro, México, Septiembre 28-30, 2016

306



REFERENCES

[1] F. L. Markley, “Fast quaternion attitude estimation from two vector
measurements,” Journal of Guidance, Control, and Dynamics, vol. 25,
no. 2, pp. 411–414, 2002.

[2] G. Wahba, “A least squares estimate of satellite attitude,” SIAM review,
vol. 7, no. 3, pp. 409–409, 1965.

[3] F. L. Markley, “Attitude determination using vector observations and
the singular value decomposition,” The Journal of the Astronautical
Sciences, vol. 36, no. 3, pp. 245–258, 1988.

[4] E. J. Lefferts, F. L. Markley, and M. D. Shuster, “Kalman filtering
for spacecraft attitude estimation,” Journal of Guidance, Control, and
Dynamics, vol. 5, no. 5, pp. 417–429, 1982.

[5] R. Mahony, T. Hamel, and J.-M. Pflimlin, “Nonlinear complementary
filters on the special orthogonal group,” Automatic Control, IEEE
Transactions on, vol. 53, no. 5, pp. 1203–1218, 2008.
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