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Abstract: A typical problem in the PD controllers is their practical implementation. The solution of using 

a filter to the derivative action has been widely proposed in the literature. However, just high value of the 

filter coefficient is suggested in order to recuperate the inherent derivative action of the controller. In this 

way, this work avoids to assume high values for the filter coefficient and presents a stability analysis of a 

proposed filter to PD controller to the case of systems with time delay, particularly Unstable First Order 

plus Time Delay (UFOPTD) systems. This analysis becomes interesting since the results have not been 

presented in literature. As a second step of analysis, it is proposed a simple methodology to obtain the 

optimal gains 𝒌𝒅,𝒌𝒑 from the stable known region. The proposed analysis is based on an approximation 

of the delay term, using the first and second order Padé approximations. 
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1. INTRODUCTION 

Time-delay of control inputs is a common phenomenon in 

diverse application fields. Currently some systems are 

controlled remotely generating a time delay between the 

systems and the control systems. The control problem of time 

delay systems arises mainly by the induced transcendental 

term in the characteristic equation due to the feedback loop, 

which gives as result a characteristic equation having an 

infinite number of poles. Due to the complexity of the 

problem, the community control have devoted its efforts for 

designing control strategies that provides an adequate 

performance of the system; see for instance Seshagiri, et al., 

(2007). To the case of open-loop stable process, the well-

known Smith Predictor Compensator has been used as a 

traditional control structure .By using a similar approach, 

some works have been reported in order to deal with unstable 

processes Liu et al., (2005), Seshagiri and Chidambaram 

(2005). As a first attempt to analyse a generalized class of 

delayed systems, the case of first order delayed system has 

been widely studied by using the basis provided by the SPC, 

see for instance Seshagiri, et al., (2007), Michiels et al., 

(2002), Marquez et al., (2012). With a simpler and different 

perspective, some authors have regarded to analyse the case 

when the system is controlled by a Proportional (P), 

Proportional-Integral (PI) and Proportional-Integral-

Derivative (PID). Nesimioglu and Soylemez (2010) 

computed all stabilization proportional controllers. Hwang 

and Hwang (2004) used the D-partition technique to estimate 

the stabilization limits of PID compensation, showing that an 

UFOPTD system can be stabilized if  𝜃 < 𝜃𝑢𝑛 , where 𝜃 is the 

time-delay and 𝜃𝑢𝑛  is the unstable constant-time. Silva and 

Bhattacharyya (2005) provided a complete parameterization 

of the stabilizing P and PI controller in the case 𝜃 < 𝜃𝑢𝑛  and 

the stabilizing PID controllers for the case 𝜃 < 2𝜃𝑢𝑛 . 

Recently, Marquez et al., (2014) consider the stabilization of 

UFOPTD system by using a Proportional-Derivative (PD) 

controller, showing that the derivative term minimizes the 

effects of the time-delay. In Lee et al., (2010) some results 

about the stabilization of a delayed system with one unstable 

pole and several stable poles by using P, PI, PD and PID 

controller are provided, however,  they do not consider the 

important issue in the PD controller: the practical 

implementation. In this work we analyze the stability 

conditions of the closed-loop system for different values of 

the filter coefficient. It is known that when a control strategy 

is applied to a system it is desired to obtain optimal 

performance of the system with respect to specific variables. 

In this work a simple and effective methodology to obtain de 

optimal gains 𝑘𝑝, 𝑘𝑑  in order to minimize the control input 

and state is proposed. Such methodology is based on the 

approximation of the delay term as well as the knowledge of 

the stabilizing region 𝑘𝑝 − 𝑘𝑑 assumption. This work is 

organized as follows. Section 2 presents the problem 

formulation. After this, in Section 3 some preliminary results 

are given. Then, Section 4 presents the main results of this 

work. In Section 5 a numerical example is given and finally 

in Section 6 some conclusions are provided. 

2. PROBLEM FORMULATION 

Consider an UFOPTD system given by, 

 

                                 𝐺  𝑠 =
𝑌(𝑠)

𝑈(𝑠)
=

𝑏

𝑠 − 𝑎
𝑒−𝜃𝑠 ,                      (1)


a traditional filtered PD controller of the form, 

 

             𝐶  𝑠 = 𝑘𝑝 +
𝑘𝑑𝑠
𝑠
𝑁

+ 1
=
𝑁𝑘𝑝 + (𝑘𝑝 + 𝑁𝑘𝑑)𝑠

𝑠 + 𝑁
,           (2) 

 

where 𝑁 is known as coefficient filter, and the control 

scheme (fig 1). If the parameters 𝑘𝑝 , 𝑘𝑑  are known in the 

case of non-filtered PD controller, a traditional and heuristic 

way to implement in practice the controller given in (2) is 

setting 𝑁 as 𝑁 ≫ 0. Notice that for 𝑁 ≫ 0 in (2) the 

properties of the non-filtered PD controller are recovered. 

However there is not a guideline to set of 𝑁 or an explanation 
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if the closed-loop system remains stable when N decreases. 

This work considers this problem to the proposed filtered PD 

controller i. e., it is provided the allowable value of the 

coefficient filter such that the closed loop is stable and it is 

shown how the stability properties are modified due to the 

values of N. Also, it considers the values such that the gains 

of PD controller will be optimum. Consider a system given 

by (1) and a filtered PD controller given by (2). The transfer 

function on open loop given by, 

 

            𝐶  𝑠 𝐺  𝑠 =  
𝑁𝑘𝑝 + (𝑘𝑝 + 𝑁𝑘𝑑)𝑠

𝑠 + 𝑁
 

𝑏

𝑠 − 𝑎
𝑒−𝜃𝑠 ,   (3) 

 

can be separated as follows, 

 

𝐶 𝑠 𝐺 𝑠 = (𝑁𝑘𝑝 + (𝑘𝑝 + 𝑁𝑘𝑑)𝑠)
𝑏

 𝑠 − 𝑎  𝑠 + 𝑁 
𝑒−𝜃𝑠(4) 

 

where, 

                             𝐺 𝑠 =
𝑏

 𝑠 − 𝑎  𝑠 + 𝑁 
𝑒−𝜃𝑠 ,                      (5) 

 

                            𝐶 𝑠 =  𝑁𝑘𝑝 +  𝑘𝑝 + 𝑁𝑘𝑑 𝑠                      6  

 

The closed-loop stability properties of the system given by 

(1) - (2) can be obtained from the closed-loop (5) - (6). The 

closed loop stability properties of (5) - (6) are studied in Lee 

et al., (2010). 

3. PRELIMINARY RESULTS 

Consider a system given by (5) controlled by (6). The 

following result establishes the closed-loop stability 

conditions. 

[Lee et al., (2010)] Lemma 1. A necessary condition for a 

PD controller given by (6) stabilizes the system given by (5) 

is,  

 

                              𝜃 <   
1

𝑎
 

2

+  
1

𝑁
 

2

+
1

𝑎
−

1

𝑁
                     (7) 

If this condition is satisfied then the range of 𝑘𝑑  and 𝑘𝑝  gains 

for which a solution exists to the PD stabilization problem 

are given by, 

 

                     𝜃 −
1

𝑎
<
𝑘𝑑
𝑘𝑝

<   
1

𝑎
 

2

+  
1

𝑁
 

2

−
1

𝑁
 ,                 (8) 

 

                     
𝑎

𝑏
< 𝑘𝑝 <

𝑎

𝑏
 

 1 + 𝜔𝑐
2  1 +

𝑎2𝜔𝑐
2

𝑁2  

1 +  
𝑘𝑑
𝑘𝑝

+
1
𝑁
 

2

𝑎2𝜔𝑐
2

,                (9) 

 

where 𝜔𝑐  satisfies, 

 

𝑎𝑟𝑐𝑡𝑔 𝜔𝑐 + 𝑎𝑟𝑐𝑡𝑔  
𝑘𝑑
𝑘𝑝

𝑎𝜔𝑐 − 𝑎𝑟𝑐𝑡𝑔  
𝑎𝜔𝑐

𝑁
 − 𝜃𝑎𝜔𝑐 = 0 

 

Fig 1. A control scheme UFOPTD system. 

4. MAIN RESULTS 

In this section the main results of this work are depicted. The 

following result provides the stability conditions such that the 

PD controller given by (2) stabilizes the system given by (1). 

Theorem 1. Consider a system given by (1), a filtered PD 

controller of the form (2) and the control feedback (fig 1). A 

necessary condition for a filtered PD controller stabilizes the 

closed-loop system is: 

                                         𝜃 <
2

𝑎
 with 𝑁 ≫ 𝑎                            (10) 

                                         𝜃 <
1

𝑎
 with 𝑁 ≪ 𝑎                            (11) 

Proof. i) From the necessary condition (7) given in Lemma 

1, it should be that it 𝑁 ≫ 𝑎, the term 
1

𝑁
→ 0 which leads to 

the condition, 

𝜃 <   
1

𝑎
 

2

+
1

𝑎
=

2

𝑎
 , 

Proof. ii) From the necessary condition (7) given by Lemma 

1, if  𝑁 ≪ 𝑎 is considered i. e, 𝑁 = 𝑥𝑎 with 0 < 𝑥 < 1, the 

term  
1

𝑎
 

2

≪  
1

𝑥𝑎
 

2

 and  
1

𝑎
 

2

can be remove from the 

expression and we obtain,  

𝜃 <   
1

𝑥𝑎
 

2

+
1

𝑎
−

1

𝑥𝑎
=

1

𝑎
 

On the other hand, if the condition i) or ii) is satisfied, then 

the stabilizing coefficient filter should be chosen from, 

                                          𝑁 >
2 − 2𝑎𝜃

𝑎𝜃2 − 2𝜃
                                 (12) 

In what follows a simple and effective methodology to obtain 

the optimal 𝑘𝑝 , 𝑘𝑑  control parameters in order to minimize 

the energy of the input control and states system. It is 

important to note that the following optimization strategy 

assumes that the stabilizing region of the control parameters 

is known and such regions can be computed following 

Lemma 1 (Lee et al 2010). In order to obtain a rational 

representation on the complex variable "s" of the delay term 

the first step of the proposed methodology considers a first 

order Padé approximation, which can be expressed as, 

                                     𝑒−𝜃𝑠 =
−𝑠 +

2
𝜃

𝑠 +
2
𝜃

                                    (13) 

Then, by substituting the approximation (13) into the process 

given by (1), a rational representation on the complex 

variable "s" of the plant is obtained, 
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                      𝐺1 𝑠 =
𝑏  −𝑠 +

2
𝜃
 

 𝑠 − 𝑎  𝑠 + 𝑁  𝑠 +
2
𝜃
 

                   (14) 

Taking into account the approximated system (14), the 

proposed filtered PD (2), and the closed loop system shown 

in Figure 1, a closed-loop state space representation of the 

form, 

𝒙 = 𝑨𝒙 + 𝑩𝑢 

                                           𝑦 = 𝑪𝒙 + 𝑫𝑢,                                  (15) 

is obtained with, 

𝐴1 =

 
 
 
 
 
 

2

𝜃
−𝑏 0

 𝑘𝑝 + 𝑁𝑘𝑑 
4

𝜃
𝑎 + 𝑏 𝑘𝑝 + 𝑁𝑘𝑑 −𝑁𝑘𝑑

4

𝜃
𝑁 𝑏𝑁 −𝑁  

 
 
 
 
 

, 

   𝐵1 =  
0

𝑘𝑝 + 𝑁𝑘𝑑
𝑁

 ,   𝐶1 =  −
4

𝜃
−𝑏 𝑁 ,  𝐷1 =  0 ,   (16) 

for a second Padé approximation, the delay term is expressed 

by, 

                              𝑒−𝜃𝑠 =
𝑠2 −

6
𝜃
𝑠 +

12
𝜃2

𝑠2 +
6
𝜃
𝑠 +

12
𝜃2

                                (17) 

and his rational and state space representation are given by,  

                  𝐺 𝑠 =
𝑏  𝑠2 −

6
𝜃
𝑠 +

12
𝜃2 

 𝑠 − 𝑎  𝑠 + 𝑁  𝑠2 −
6
𝜃
𝑠 +

12
𝜃2 

           18  

 

𝐴 =

 
 
 
 
 
 
 
 

0 1 0 0 0

−
12

𝜃2
−

6

𝜃
𝑏 0 0

0 −
12 𝑘𝑑
𝜃2

𝑎 − 𝑏 𝑘𝑑  𝑘𝑖 𝑘𝑝 − 𝑁𝑘𝑑

0 0 0 0 1

0
12

𝜃
−𝑏 0 −𝑁  

 
 
 
 
 
 
 

, 

   𝐵 =

 
 
 
 
 

0
0
𝑘𝑑
0
1  
 
 
 
 

 ,   𝐶 =  0 −
6

𝜃
𝑏 0 0  ,     𝐷 =  0       (19)  

Now, based on the second method of Lyapunov an 

optimization process to obtain the optimal 𝑘𝑝  and 𝑘𝑑  control 

parameters is derived. The performance index defined to 

evaluate the behaviour of the system is given by, 

                          𝐽 =  𝒙𝑻𝑸𝒙𝑑𝑡

∞

0

= 𝒙𝑻 0 𝑷𝒙 0 ,                   (20) 

where: 

𝒙 is the states vector. 

𝑷 is a Define Positive Matrix. 

𝑸 is a Define Positive Matrix. 

𝑨 is a 𝑛𝑥𝑛 Matrix. 

𝐽  is the performance index. 

The main objective of the optimization process is to 

minimize the behavior index (20) assuring closed-loop 

stability. In this way, the solution of the following equation is 

required, 

                                      𝑨𝑻𝑷 + 𝑷𝑨 = −𝑸                                 (21) 

From the second method of Lyapunov it is known that if the 

equation (21) has a unique solution, the closed-loop system 

given by (15) is stable. Equation (21) should be solved by 

proposing 𝑸 and solving to 𝑷. This step requires that two of 

the control gains (for instance 𝑘𝑝  and 𝑘𝑑 , 𝑘𝑝  and 𝑘𝑖  or 𝑘𝑖  and 

𝑘𝑑 ) are given from the stable region computed with Lemma 1 

(Lee et al. 2010). Notice that the resultant matrix 𝑷 contains 

the control parameters of the control. Once that 𝑷 is obtained, 

𝑷 is replaced into the performance index (20). Then, in order 

to minimize the performance index (20), the derivative of the 

performance index (20) is computed and the optimal gain (for 

instance 𝑘𝑖 , 𝑘𝑑  𝑜𝑟 𝑘𝑝 ) is solved from, 

                                                    
𝑑𝐽

𝑑𝑥
= 0                                   (22) 

5. SIMULATION RESULTS 

Example 1. Consider a UFOPTD system given by, 

 

𝐺 𝑠 =
1

𝑠 − 1
𝑒−1.3𝑠 

 

and a filtered PD controller by (2). Following the Theorem 2, 

the condition 𝜃 <
2

𝑎
 is satisfied due to 1.3 < 2. From the iii), 

the range of 𝑁 values is, 

 

𝑁 > 0.65934066 
 

Following the Lemma 1, the ranges of 𝑘𝑑  and 𝑘𝑝  values are, 

0.3 <
𝑘𝑑

𝑘𝑝
<  1 +  

1

𝑁
 

2

−
1

𝑁
 and 1 < 𝑘𝑝 <  

 1+𝜔𝑐
2  1+

𝜔𝑐
2

𝑁2 

1+ 
𝑘𝑑
𝑘𝑝

+
1

𝑁
 

2
𝜔𝑐

2
  

Fig 2. shows the stability regions 
𝑘𝑑

𝑘𝑝
− 𝑘𝑝  that each 𝑁 value 

generates, Fig. 4 shows the stability regions  for some 𝑁 

values. Notice that when 𝑁 = 50 the stability region is seems 

to the regions with 𝑁 larger values. With this 𝑁 value, the 

ranges of 𝑘𝑑  values and 𝑘𝑝  values are, 

                   0.3 <
𝑘𝑑

𝑘𝑝
< 0.982 and 1 < 𝑘𝑝 < 1.2173 

   To obtain the optimal values for these ranges, a 
𝑘𝑑

𝑘𝑝
 

stabilizers values sweep is performed to find the 𝑘𝑝  values 

that they make the index to be the minimum, and vice versa. 
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Fig 2. Stability regions to different 𝑁 values. 

 
Fig 3. Stability region for N = 1, 5, 10, 50, 100, 1000. 

 

 

Fig 4. 𝑘𝑝and 
𝑘𝑑

𝑘𝑝
 Optimal values with 1° and 2° Pade approx. 

 

The 𝑘𝑝  and 
𝑘𝑑

𝑘𝑝
 optimal values for first and second Pade 

approximation are shown in fig 4. for 𝑁 = 50. The cross 

point of the 𝑘𝑝  and 
𝑘𝑑

𝑘𝑝
 optimal values is the point where 𝐽 is 

the minimum value for all 𝑘𝑝  and 
𝑘𝑑

𝑘𝑝
 vales. These values are 

shown in table 1. Consider the control design used in the 

system of the Example 3., i. e., 𝑘𝑝 = 1.087, 𝑘𝑑 = 0.715. The 

stability in closed-loop on the Nyquist Plot as it shown in fig 

5.., this plot shows encircles the critical point (−1,0) one 

time anticlockwise due there is one unstable pole. Fig. 6 

shows the output of the controller with the values of table 1, 

note that second Pade approximation offers the best result. 

The output plots to different 𝑁 values are shown in Fig 7. 

 

 

Table 1. Optimal values and performance index. 

 

Pade approximation 𝒌 𝒑 𝒌 𝒅 

1° Pade approximation 1.201 0.753 

2° Pade approximation 1.087 0.715 

 

 
Fig 5. Nyquist plot of the closed-loop. 

 

When 𝑁 values are big, the output behaves as the output of a 

system controlled by a PD controller without filter, while for 

𝑁 values are small, the system output begins to oscillate 

stronger and its steady state time increases. 

 

Fig 6. Controller output without reference and 𝑥(0) = 0.1 

 

 
Fig 7. Output plots. 

 

6. CONCLUSION 

In this paper, the stabilization of UFOPTD systems is 

investigated. The stability conditions by the filtered PD 

controller are established to different N values. The analysis 

 k𝒑 

N=10 

N=50 

N=1000 
N=100 

N=1 

N=5 

             1° Pade  

             2° Pade 

k𝒅
k𝒑

  

k𝒑 

 N = 100 

 N = 50 

 N = 10 

 N = 5 

k𝒅
k𝒑

  

k𝒅
k𝒑

  

             1° Pade  

             2° Pade N=50 

k𝒑 
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provides exact stability region in terms of control parameters 

and indicates that stability can be achieved as long as 𝜃 <
2

𝑎
 

and we have illustrated it through an example and its 

simulation. Using a good approximation of the time delay 

and the proposed methodology of optimization for the 

controller parameters 𝑘 𝑑 − 𝑘 𝑝  it is possible to compute 

approximate optimal gains 𝑘 𝑑 − 𝑘 𝑝  for UFOPTD systems. 

The results in this work complement previously published 

results on the stabilization of unstable processes under 

classical compensation strategies. 
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