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Abstract: This paper takes a previous manuscript in which the car-following Helly’s model
was used to design two different control schemes: one Proportional-Integral regulator and an
Optimal Control scheme. In this document, we are presenting the stability analysis of the car-
following model as well as the stability analyses of those control designs. Of course, the stability
character of all of those approaches are confirmed, but the way in which they are obtained are
quite interesting due to the results and implications obtained.
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1. INTRODUCTION

This paper is totally based on the work by (Rosas-
Jaimes et al., 2015). This time, we take advantage of the
space and the opportunity to develop the corresponding
stability analyses of all the models and control designs
presented in that manuscript in order to make a complete
framework of such schemes.

In this way, this present document shows the ways in
which those expressions are stable, but also generalizes
those results and points out details about the involved
parameters and the physical approaches in which they
are applied.

The theoretical background, in this case, is the same
as for the paper of (Rosas-Jaimes et al., 2015) which
studies Helly’s Car-Following Model (Helly , 1959) as an
extension of Pipes’ Car-Following Model (Pipes, 1953).

Those two models were presented and analyzed by its re-
spective authors. However, we present here Lyapunov sta-
bility approaches for both of them, confirming the stable
nature of these two models under realistic assumptions,
and then we span this idea to the Proportional–Integral
Control and the Optimal plus Proportional–Integral Reg-
ulator developed and presented in (Rosas-Jaimes et al.,
2015).

Such control schemes have not been taken into account
in literature as far as we know, and the same can be said
about their Lyapunov-type stability analyses.

⋆ This research has been supported by PROED fonds.

This paper is organized as follows: Section 2 presents a
brief description of Pipes’ and Helly’s Car-FollowingMod-
els. Details about such models can be found in (Rosas-
Jaimes et al., 2015), as mentioned. Section 3 is the main
purpose of this text, and herein we develop the stability
analyses for the two models and for the two control
approaches already mentioned. As we will show, these
analyses give deeper insights about the conditions and
quantities under which these expressions are realistically
stable, giving support to automotive applications, for ex-
ample. Section 4 contains the main conclusions of this
communication.

2. DESCRIPTION OF MODELS AND CONTROL
DESIGNS

Car-following models represent systems formed by two
moving vehicles, one in the front and another behind,
translating in a single lane, with vL(t) as the velocity of
the car in front (leader) and vf (t) as the velocity of the
car in the back (follower), assuming that passings are not
allowed (Treiber et al., 2000).

Since more than sixty years, several models trying to
represent such a phenomena have arisen, being a simple
and intuitive model proposed by (Pipes, 1953) one of
the first to be known. Pipes’ Model has the following
expression

dvf (t)

dt
= λ [vL(t)− vf (t)] (1)

where λ is a sensitivity parameter, related with the
reactive behavior of the driver in the follower car, a
quantity considered as λ ∈ [0, 1].
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Fig. 1. Block diagram for output feedback applied to
Helly’s model based on (3)

Helly (1959) extends Pipes’ model introducing a term
that takes into account the relative position of the vehicles

dvf (t)

dt
= λv [vL(t)− vf (t)] +

+ λx [xL(t)− xf (t)−D(t)] (2)

In equation (2) λv is the same sensitivity parameter as in
Pipes’ equation (1) that affects the difference of velocities,
meanwhile λx is a parameter for the additional term of
the difference between the leader’s position xL(t) and the
follower’s position xf (t), which is in turn affected by a
desired distance D(t). This last term adjusts the driver’s
response in such a way that it depends on the relative
distance xR(t) = xL(t)−xf (t) and not only on the relative
velocity vR(t) = vL(t) − vf (t). As for the case of Pipes’
model, for Helly’s model λv ∈ [0, 1] and λx ∈ [0, 1]. An
alternative expression of (2) is as follows

ẋR(t) = −λx

λv

[xR(t)] +
1

λv

[v̇f (t) + λxD(t)] (3)

Equation (2) can also be written in a matrix form
[

v̇f
ẋR

]

=

[

−λv λx

−1 0

] [

vf
xR

]

+

[

λv −λx

1 0

] [

vL
D

]

(4)

with the state [vf xR]
T and an output expression

y = [ 0 1 ]

[

vf
xR

]

(5)

See (Rosas-Jaimes et al., 2015) for details.

Because Helly’s model is a more complete approach than
Pipes’, and still preserves a simple and intuitive under-
standing of the represented phenomena, it is preferred to
be used for developing control designs on it.

(Rosas-Jaimes et al., 2015) have proposed an output
feedback control based on Equation (3) as depicted in
Figure 1, with a control function F

F = k
s+ a

s
= k +

ka

s
(6)

Another control scheme suggested in (Rosas-Jaimes et al.,
2015) is an Optimal Control with a Proportional plus
Integral feedback as shown in Figure 2 with a state control
matrix K

K = R−1BTP =

=













−2λx

λv + λx

+
2
√

λ2
v + λvλx + λ2

x

λv + λx

√
2

2
λx

λv

λv + λx

−
√

λ2
v + λvλx + λ2

x

λv + λx

0













(7)

And matrices A, B, C, and R defined as

A =

[

−λv λx

−1 0

]

B =

[

λv −λx

1 0

]

C = [ 0 1 ] R =

[

λv/2 0
0 λx

]

Matrix P is an important stability factor as for the design
of this regulator as for the analysis that will be performed
in the next section, with the properties of being symmetric
and positive definite.

P =









−λv

λv + λx

+

√

λ2
v + λvλx + λ2

x

λv + λx

0

0

√
2

2
λv









(8)

See (Rosas-Jaimes et al., 2015) for details about these
designs.

3. STABILITY ANALYSES

3.1 Pipes’ Model Stability

We begin our analyses with Pipes’ Model (1), expressed
as in equation (9)

dvf
dt

= −λvf + λvL (9)

Let Vp(vf ) a Lyapunov function candidate such as

Vp(vf ) =
1

2
v2f (10)

Its time derivative is given by

V̇p(vf ) = vf
dvf
dt

= vf (−λvf + λvL) (11)

Equation (11) can be rewritten as Equation (12)

V̇p(vf ) = λvf (vL − vf ) ≤ 0 (12)

Equation (12) states that Pipes’ Model is stable.

This last statement is true when vf ≥ vL. This happens
when the follower vehicle is getting closer to the leader
vehicle, and then a decreasing behavior in vf is observed
as vf → vL. A steady state is reached when vf = vL.

In the possible case in which vL has a larger value
than vf , then the leader vehicle is leaving behind the
follower vehicle, and their separation increases without
limit, unless the relation between these velocities varies
in the opposite situation.

3.2 Helly’s Model Stability

Let Helly’s Model be in the state form (4). And let
VH(vf , xR) be a Lyapunov candidate function as in Equa-
tion (13)
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Fig. 2. Block diagram for optimal-integral control for Helly’s model

VH(vf , xR) = [ vf xR ]

[

p11 p12
p12 p22

] [

vf
xR

]

(13)

For a symmetric and positive definite matrix P .

Derivative of VH(vf , xR) is given by Equation (14)

V̇H(vf , xR) = [ vf xR ]

[

p11 p12
p12 p22

] [

v̇f
ẋR

]

+

+ [ v̇f ẋR ]

[

p11 p12
p12 p22

] [

vf
xR

]

(14)

When substituting time derivative parts in Equation (14),
Equation (15) is obtained

V̇H(vf , xR) = [ vf xR ]

[

p11 p12
p12 p22

]

·

·
([

−λv λx

−1 0

] [

vf
xR

]

+

[

λv −λx

1 0

] [

vL
D

])

+

+

(

[ vf xR ]

[

−λv −1
λx 0

]

+ [ vL D ]

[

λv 1
−λx 0

])

·

·
[

p11 p12
p12 p22

] [

vf
xR

]

(15)

By performing operations, then Equation (15) can be
written as Equation (16) shows in the following developed
expression

V̇H(vf , xR) = 2 [λv (vL − vf ) vfp11 +

+ λv (vL − vf )xRp12 +

+ λx (xR −D) vfp11 +

+ λx (xR −D)xRp12 +

+ (vL − vf ) vfp12 +

+ (vL − vf ) xRp22] (16)

When grouping by pij elements, then Equation (16) is
rewritten as it is presented by Equation (17) in the
following

V̇H(vf , xR) = 2 [λv (vL − vf ) + λx (xR −D)] vfp11 +

+ 2 {[λv (vL − vf ) + λx (xR −D)]xR +

+ (vL − vf ) vf} p12 +
+ 2 (vL − vf )xRp22 (17)

In order to take into account the condition of symmetry
and positive definitiveness of P , let p11 = vf , p12 = 0 and

p22 = xR. Then V̇H(vf , xR) becomes

V̇H(vf , xR) = 2 [λv (vL − vf ) + λx (xR −D)] v2f +

+ 2 (vL − vf )x
2

R ≤ 0 (18)

and then Helly’s Model is stable.

Equation (18) is true if vf ≥ vL and D ≥ xR. This
situation occurs when the follower vehicle is getting closer
to the leader. Similar to the case of Pipes’ Model, if the
velocity of the leader is larger than the velocity of the
follower, then this last one is left behind and the distance
xR is increased without limit.

3.3 Output Feedback Control Stability

Helly’s Model taken as Equation (3) can be properly
modified in order to take the term where v̇f and D appear
as inputs and then be expressed as in Equation (19) where
a disturbance δ(t) is also included

ẋR(t) = −λx

λv

[xR(t)] +
1

λv

[u(t) + δ(t)] (19)

In (Rosas-Jaimes et al., 2015) a control input u(t) is
obtained by designing a proportional plus integral output
feedback for regulating the distance xR, as stated by the
following Equation (20)

u(t) = ka

∫ t1

to

(D − xR) dt+ k (D − xR) (20)

where D is a safety distance between cars that appears
as a lower limit to xR, and k and a are convenient design
constants. Let VFH a Lyapunov candidate function for
analyzing the stability of this output feedback approach
in Helly’s model, with an expression (21) as follows

VFH =
1

2
x2

R (21)
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Then, its time derivative is given as Equation (22)
presents in the following:

V̇FH = xRẋR (22)

By proper substitution of Equations (19) and (20) in
Equation (22):

V̇FH = xR

{

−λx

λv

xR +

+
1

λv

[

ka

∫ t1

to

(D − xR) dt+ k (D − xR)

]

+

+
1

λv

[

δ(t)
]

}

(23)

This expression of V̇FH can be written in the alternate
version given by Equation (24)

V̇FH =−λx

λv

x2

R − xR

λv

ka

∫ t1

t0

(xR −D) dt−

−xR

λv

k (xR −D)− xR

λv

δ(t) ≤ 0 (24)

showing up that this output feedback control is stable.

Equation (24) is true if xR ≥ D and δ(t) is bounded. The
first statement is the same as that mentioned for Pipes’
and Helly’s models in the sense that the follower vehicle
approaches to the leader vehicle, making xR → D.

Disturbance δ(t) must be bounded as Equation (25) states

δ(t) ≤ λxxR + ka

∫ t1

t0

(xR −D) dt+ k (xR −D) (25)

Adding and substracting λxD and taking absolute values
on (25) results in

|δ(t)| ≤ λx|xR −D|+ ka|
∫ t1

t0

(xR −D) dt|+

+k|xR −D|+ λxD

≤ λx|xR −D|+ ka|xR −D|max (t1 − t0)

+k|xR −D|+ λxD (26)

And then

|δ(t)| ≤ [λx + kamax (t1 − t0) + k] |xR −D|+ λxD (27)

In this way, disturbance δ(t) is a varying quantity, instead
of a constant value, for xR > D. If xR = D then

|δ(t)| ≤ λxD (28)

3.4 Optimal Control Scheme Stability

A second control design presented in (Rosas-Jaimes et al.,
2015) is an Optimal Linear control with a Proportional–
Integral regulator (see Figure 2). This scheme takes on
leader’s velocity vL as a disturbance to Helly’s description
of the follower vehicle, which affects its behavior. For this
design, Equations (4) and (5) were used.

Let u(t) the control input to Helly’s scheme in such a way
that:

u(t) = −K

[

vf
xR

]

+





vL

GI

∫ t1

t0

(D − xR)dt



 (29)

In this manner, from Equations (4) and (29):

[

v̇f
ẋR

]

=A

[

vf
xR

]

+Bu(t) =

=A

{

(I +K)

[

vf
xR

]

−

−





vL

GI

∫ t1

t0

(D − xR)dt











(30)

Let VHO(vf , xR) be a candidate Lyapunov function with
a similar expression as in Equation (13). Because P is
symmetric, then the time derivative of VHO(vf , xR) is

V̇HO(vf , xR) = 2 [ vf xR ]P

[

v̇f
ẋR

]

(31)

Substitution of (30) in (31) is written as:

V̇HO(vf , xR) = 2 [ vf xR ]PA

{

(I +K)

[

vf
xR

]

−

−





vL

GI

∫ t1

t0

(D − xR)dt











(32)

Specific forms of P and K are taken from (Rosas-Jaimes
et al., 2015) as mentioned, then

V̇HO = 2 [ vf xR ] ·

·









−λv

λv + λx

+

√

λ2
v + λvλx + λ2

x

λv + λx

0

0

√
2

2
λv









[

−λv λx

−1 0

]

·

·
{([

1 0
0 1

]

+

+













−2λx

λv + λx

+
2
√

λ2
v + λvλx + λ2

x

λv + λx

√
2

2
λx

λv

λv + λx

−
√

λ2
v + λvλx + λ2

x

λv + λx

0

























[

vf
xR

]

−

−





vL

GI

∫ t1

t0

(D − xR)dt











(33)

Equation (33) can be briefly written as:

V̇HO = [ vf xR ]S

[

vf
xR

]

− [ vf xR ]T (34)

where basically, matrix S contains the optimal control
part and T contains the PI and the perturbation vL
elements. S is a square matrix included in a quadratic
form, but matrix T is not. Then it turns out necessary to
fully develop the scalar function of V̇HO.

From the terms in (37) it is possible to observe and
probe that the quantity indicated by (37a) is positive,
independently of the actual values of vf , λv and λx. This
quantity is a factor affecting the rest of the terms in (37),
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Performing operations and grouping properly:

V̇HO =
2v2

f

(λv + λx)
2

{

λv

[

(λv + 3λx)
√

λ2
v + λvλx + λ2

x − 2λvλx

]

− (λv + λx)
3

}

+

+
2vfxR

(λv + λx)
2

{

λx

[

λv

(√

2

2
λv − 2

)

−

(√

2

2
λx + 2

)

√

λ2
v + λvλx + λ2

x

]}

−

−
2vf

λv + λx

√

2

2
λvxR

(

λv − λx + 2
√

λ2
v + λvλx + λ2

x

)

−

−
2vf

λv + λx

[

λ
2

vvL − λvvL

√

λ2
v + λvλx + λ2

x + λx

(

√

λ2
v + λvλx + λ2

x − λv

)

(

GI

∫ t1

t0

Ddt−GI

∫ t1

t0

xRdt

)]

+

+
√

2λvvLxR − λvλxx
2

R (35)

Equation (35) can be reorganized by sign and by factorizing through vL, vf and xR:

V̇HO =
2vf

(λv + λx)
2

{

vf

[

λv (λv + 3λx)
√

λ2
v + λvλx + λ2

x

]

+ xR

[√

2

2
λ
2

vλx +

√

2

2
λvλx (λv + λx)

]}

+

+
2vf

λv + λx

{

vL

[

λv

√

λ2
v + λvλx + λ2

x

]

+ λvλxGI

∫ t1

t0

Ddt+ λx

√

λ2
v + λvλx + λ2

xGI

∫ t1

t0

xRdt

}

−

−
2vf

(λv + λx)
2

{

vf

[

2λ2

vλx + (λv + λx)
3
]

+ xR

[

2λvλx +

(√

2

2
λx + 2

)

λx

√

λ2
v + λvλx + λ2

x +

+

√

2

2
λ
2

v (λv + λx) +
√

2λv (λv + λx)
√

λ2
v + λvλx + λ2

x

]

+ x
2

R

[

1

2vf
λvλx (λv + λx)

2

]}

−

−
2vf

λv + λx

{

vL

[

λ
2

v

]

+ λx

√

λ2
v + λvλx + λ2

xGI

∫ t1

t0

Ddt + λvλxGI

∫ t1

t0

xRdt

}

(36)

From Equation (36) it is possible to group the terms in order to achieve the following useful expression:

V̇HO =
2vf

(λv + λx)
2
· (37a)

·

{

vf

[

λv (λv + 3λx)
√

λ2
v + λvλx + λ2

x − 2λ2

vλx − (λv + λx)
3

]

+ (37b)

+xR

[√

2

2
λ
2

vλx +

√

2

2
λvλx (λv + λx) −

−2λvλx −

(√

2

2
λx + 2

)

λx

√

λ2
v + λvλx + λ2

x −

√

2

2
λ
2

v (λv + λx)−
√

2λv (λv + λx)
√

λ2
v + λvλx + λ2

x

]

+ (37c)

+ vL

[

λv

√

λ2
v + λvλx + λ2

x − λ
2

v

]

− (37d)

− x
2

R

[

1

2vf
λvλx (λv + λx)

2

]

+ (37e)

+ λx

(

λv −

√

λ2
v + λvλx + λ2

x

)

GI

∫ t1

t0

(D − xR) dt

}

(37f)

and therefore the sign of V̇HO is rather dependent on the
relations of such terms.

The term in brackets affected by vL in (37b) and the term
in brackets affected by xR in (37c) are non-positive. One
easy manner to show this fact is by means of graphical
representations for each of such terms. See Figures 3 and
4.

The term in brackets affected by x2

R in (37e) including its
negative sign is a non-positive quantity also.

In order to stablish the sign of the terms of (37d) and
(37f), sum both indicated terms to achieve the expression
(38):

vL

[

λv

√

λ2
v + λvλx + λ2

x − λ2

v

]

+

+ λx

(

λv −
√

λ2
v + λvλx + λ2

x

)

GI

∫ t1

t0

(D − xR) dt =

=
(

λv −
√

λ2
v + λvλx + λ2

x

)

· (38a)

·
[

λxGI

∫ t1

t0

(D − xR) dt− vLλv

]

(38b)

Quantity (38a) is non-positive.

By defintion xR ≥ D and then the integration is non-
positive. Therefore, factor (38b) is also non-positive.

Because (38a) and (38b) are each one of them non-
positive, then
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Fig. 3. Plotted representation of Function (37b).
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Fig. 4. Plotted representation of Function (37c).

(

λv −
√

λ2
v + λvλx + λ2

x

)

·

·
[

λxGI

∫ t1

t0

(D − xR) dt− vLλv

]

≥ 0 (39)

It is necessary to know the condition by which (39) does
not surpass the rest of the analyzed terms in order to make
sure that V̇HO ≤ 0. One way to do this is by relating this
quantity with the term (37e).

x2

R

[

1

2vf
λvλx (λv + λx)

2

]

≥
(

λv −
√

λ2
v + λvλx + λ2

x

)

·

·
[

λxGI

∫ t1

t0

(D − xR) dt− vLλv

]

(40)

By using tne norm || · ||∞ in (40) it is possible to achieve

2
∥

∥

∥

x2

R

vf

∥

∥

∥

∞

≥
(

1−
√
3
)

[

GI‖
∫ t1

t0

(D − xR) dt‖∞ − ‖vL‖∞
]

(41)

As early mentioned, integration term is non-positive.
Therefore

max (x2

R) ≥
√
3− 1

2
max (vf )max (vL) (42)

By mechanical reasons, vf and vL are bounded. However,
xR can be increased without limit.

This last inequality (42) implies a condition for all the
terms in (37), i.e. the combination of such terms gives
a non-positive nature for such expression and then it is
possible to conclude that

V̇HO ≤ 0 (43)

and therefore, this control scheme is asymptotically sta-
ble.

4. CONCLUSION

Stability proofs for two models and two control schemes
have been presented.

The first two stability proofs have been developed for the
well-known Pipes’ and Helly’s Car-Following Models. The
later is an extension of the former and such stability proofs
are similar as expected.

The stability nature for both models is not only demon-
strated as expected, but some interesting details have
emerged, such as the way in which variables like vf and
xR behave in real situations, supporting those analyses
herein presented.

The stability proofs for those control designs presented
in the original article of (Rosas-Jaimes et al., 2015) have
been developed with the same matrices and quantities
that appeared in such a paper. As for the models, inter-
esting physical properties that match with the theoretical
analyses herein presented in this work have been observed,
supporting a realistic approach.

This document has had the only intention to show the
stability proofs for all the models and control designs
of those included in (Rosas-Jaimes et al., 2015). To this
respect, this present work complements those results of
this former article.
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