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Abstract: This paper is concerned with nonlinear control of an underactuated rotatory
system better known as the Furuta pendulum. Instead of the traditional approaches which are
based on linearization or involved nonlinear control techniques, the proposed controller design
is based on exact nonlinear convex representations of the plant which lead to linear matrix
inequalities when combined with the direct Lyapunov method. It is shown that robustness
as well as actuator bounds can be easily incorporated in the methodology, which preserves
its nonlinear qualities while making it numerically tractable. Simulation and real-time results
allow the reader to appreciate the effectiveness of the proposed technique.
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1. INTRODUCTION

Highly nonlinear plants have been traditionally employed
to illustrate the effectiveness of a wide variety of control
techniques. Among these systems, the different pendulum
setups such as the inverted pendulum on a cart (Angeli,
2001), the Pendubot (Begovich et al., 2002), the triple
one (Farwig et al., 1990), on an inclined rail (Furuta
et al., 1980), with an inertia wheel (Spong et al., 2001),
and the rotatory one (Furuta et al., 1992), have been
traditionally used due to their rich dynamics, underac-
tuated characteristics, and highly nonlinear behaviour.
This paper is concerned with the latter one, also known
as the Furuta pendulum, which is an underactuated
mechanism with 2 degrees of freedom (DOF), 2 beams,
and 2 rotational joints. The actuator only rotates an
horizontal beam, based on which the second beam should
be stabilized in its upright position.

Any number of control techniques have been employed
for the class of inverted pendulum systems. The simplest
are based on the linearization of the nonlinear model
and a more or less straightforward application of linear
techniques such as pole placement (Ogata, 2001). Need-
less to say, these approaches lack a proper treatment of
the nonlinearities, which limits their applicability to a
neighbourhood of the operating point. The latter disad-
vantage is inherited when multiple linear controllers are
mixed via some gain scheduling approach, since it also
relies on approximations (Khalil, 2002). On the other
hand, using exact nonlinear models may prove to be
highly complex and little rewarding, with most of the
nonlinear control techniques being very involved and
requiring a deep knowledge of specialized areas such as
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geometric control (Isidori, 1995), sliding modes (Utkin,
1992), passivity (Ortega et al., 1998), or feedback lin-
earization/backstepping (Khalil, 2014).

In recent years, nonlinear control design has shifted from
purely analytical solutions as those mentioned above to
systematic numerically computable techniques such as
those based on linear matrix inequalities (LMIs) (Boyd
et al., 1994). LMIs have become very popular as an
adequate tool for controller design because they belong
to the P -class of computational problems, i.e., their
feasibility can be optimally decided in polynomial time
(Scherer, 2004). Moreover, they arise when exact convex
rewriting of nonlinear expressions such as the sector non-
linearity approach (Taniguchi et al., 2001) is combined
with the direct Lyapunov method, producing sufficient
conditions for genuine systematic nonlinear controller de-
sign (Tanaka and Wang, 2001). Input/output saturation
limits, decay rate, and other performance measures can
be easily translated into LMIs even in a nonlinear context
via convex representations (Duan and Yu, 2013).

This work is concerned with real-time implementation of
an LMI-based nonlinear controller in the Furuta pendu-
lum. The plant model is described in section 2, where
the nonlinear expressions are exactly rewritten as convex
sums. Section 3 shows how a nonlinear model in a convex
form can be analyzed and controlled via LMI conditions,
which are derived by means of a quadratic Lyapunov
function. Section 4 presents the simulation and real-time
implementation results of the designed controller along
with a discussion on related issues. Concluding remarks
are given in section 5.

2. THE FURUTA PENDULUM

The Furuta pendulum is shown in Fig.1; it consists
on two beams: an horizontal one at the base which is
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rotationally driven by a fixed DC motor, and a vertical
one which is articulated by a rotary joint with the
first one. Obviously, controlling the second beam as to
keep it in its upright position via the DC motor is
an underactuated task. Via Euler-Lagrange modelling,
a state-space representation of this plant can be found
(Quanser, 2006); it is given in (1). The horizontal beam
describes an angle x1 with respect to a fixed position;
its angular velocity is given by x2. The vertical beam
describes an angle x3 with respect to the vertical upright
axis; x4 is the corresponding angular velocity. Our task
is to keep the second beam in its upright position, which
coincides with driving the system to x3 = 0.

ẋ1 = x2

ẋ2 =
(β + γ)

(
δx2

4
sinx3 − 2βx2x4 cosx3 sinx3 + u

)

((β + γ)β + δ2) sin2 x3 + (β + γ)α− δ2

−
δ cosx3

(
βx2

2 cosx3 sinx3 + σg sinx3

)

((β + γ)β + δ2) sin2 x3 + (β + γ)α− δ2

ẋ3 = x4 (1)

ẋ4 =

(
β sin2 x3+α

) (
βx2

2 cosx3 sinx3 + σg sinx3

)

((β + γ)β + δ2) sin2 x3 + (β + γ)α− δ2

−
δcosx3

(
δx2

4sinx3−2βx2x4cosx3sinx3+u
)

((β + γ)β + δ2) sin2 x3 + (β + γ)α− δ2

with α =
(
J0 +m1L

2

0

)
/Tc, β =

(
m1l

2

1

)
/Tc, γ = J1/Tc,

δ = (m1L0l1) /Tc, σ = (m1l1) /Tc, L0 = 0.068m and
J0 = 6.9885e−5kg·m2 are length and total moment
of inertia of the horizontal link, respectively, m1 =
0.02366kg, l1 = 0.08m, and J1 = 1.7590e−4kg·m2 are
the mass, center of mass, and total moment of inertia
of the vertical beam, respectively, g = 9.81m/s2 and
Tc = 0.0049431 N·m/V are the gravitational constant
and the torque constant, respectively.

Each nonlinearity in (1) can be algebraically rewrit-
ten as a convex sum; the first step towards this goal
consists on choosing these expressions. For instance,
if the chosen nonlinearities are z1 = (β + γ) δx2

4 −
2β (β + γ)x2x4 cosx3 − βδx2

2
cos2 x3 − δσg cosx3, z2 =

(sinx3) /x3, z3 =
(
β sin2 x3 + α

) (
βx2

2 cosx3 + σg
)
−

δ cosx3

(
δx2

4
− 2βx2x4 cosx3

)
, z4 = cosx3, and z5 =

1/
((
β2 + γβ + δ2

)
sin2 x3 + αβ + αγ − δ2

)
, then, (1) is

equivalent to:

Fig. 1. Furuta pendulum

ẋ =






0 1 0 0
0 0 z1z2z5 0
0 0 0 1
0 0 z2z3z5 0




x+






0
(β + γ)z5

0
−δz4z5




u. (2)

Since the Furuta pendulum is not supposed to operate
for any value of the model states, we can restrict our
operation regime to |x2| ≤ 10 rad/s, |x3| ≤ 15 (in
degrees), and |x4| ≤ 3 rad/s (note that x1 is not at
the right-hand side of the model). Taking into account
these bounds, the variables in (2) can also be bounded
as z1 ∈ [−0.2833,−0.0324], z2 ∈ [0.9886, 1.0000],
z3 ∈ [0.1251, 0.2961], z4 ∈ [0.9659, 1.0000], and z5 ∈
[524.0978, 579.0187]. Note that for any nonlinearity zi ∈
[z0i , z

1

i ], the following is an algebraic identity:

zi =
z1i − zi
z1i − z0i
︸ ︷︷ ︸

wi

0

(
z0i
)
+

zi − z0i
z1i − z0i
︸ ︷︷ ︸

wi

1

(
z1i
)
,

wi
0
+ wi

1
= 1,

0 ≤ wi
j ≤ 1.

(3)

Therefore, since wi
0
+ wi

1
= 1, each zi, i ∈ {1, 2, . . . , 5}

in (2) can be rewritten as a convex sum. Convex sums
can be stacked together because if the expression they
involve is not concerned with their index, it is equivalent
to multiply by 1:

ẋ =

1∑

i1=0

1∑

i2=0

· · ·
1∑

i5=0

w1

i1
w2

i2
· · ·w5

i5


















0 1 0 0
0 0 zi1

1
zi2
2
zi5
5

0
0 0 0 1
0 0 zi2

2
zi3
3
zi5
5

0







︸ ︷︷ ︸

Ai

x

+







0
(β + γ)zi5

5

0
−δzi4

4
zi5
5







︸ ︷︷ ︸

Bi

u












=
r∑

i=1

hi(x) (Aix+Biu) , (4)

where hi = w1

i1
w2

i2
· · ·w5

i5
, [i1i2 · · · i5] is the 5-digit binary

representation of (i − 1), i ∈ {1, 2, . . . , r}, r = 25 = 32.
Despite its appearance, system (4) is not linear nor an
approximation of (1): its construction proves that it is
algebraically equivalent to the original one.

As a way of illustration, some of the 32 pairs (Ai, Bi)
are given below; they correspond to the cases described
in table 1, where zi, i ∈ {1, 2, . . . , 5} have taken some of
their corresponding extreme values.

Table 1. Some values for (2)

i z1 z2 z3 z4 z5

1 -0.2833 0.9886 0.1251 0.9659 524.0978

8 -0.2833 0.9886 0.2961 1.0000 579.0187

16 -0.2833 1.0000 0.2961 1.0000 579.0187

32 -0.0324 1.0000 0.2961 1.0000 579.0187

A1 =






0 1 0 0
0 0 −146.77 0
0 0 0 1
0 0 64.84 0




 , A8 =






0 1 0 0
0 0 −162.15 0
0 0 0 1
0 0 169.48 0




 ,
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A16 =






0 1 0 0
0 0 −164.02 0
0 0 0 1
0 0 171.43 0




 , A32 =






0 1 0 0
0 0 −18.77 0
0 0 0 1
0 0 171.43 0






B1 =






0
34.695

0
−13.162




 , B8 =






0
38.331

0
−15.055




 ,

B16 =






0
38.331

0
−15.055




 , B32 =






0
38.331

0
−15.055




 .

Naturally, the choice of nonlinearities is not unique.
For instance, if 6 nonlinearities ζ1 = z2, ζ2 = z4,
ζ3 = z5, ζ4 = sin2 x3 ∈ [0, 0.0670], ζ5 = x2 sinx3 ∈
[−2.5882, 2.5882], and ζ6 = x4 sinx3 ∈ [−0.7765, 0.7765]
are picked up, then, following the same procedure, (1)
can be alteratively written as:

ẋ =










0 1 0 0

0
δ(ζ4 − 1)βζ5ζ3

−2β(β + γ)ζ2ζ3ζ6
−δσgζ1ζ2ζ3 δζ6ζ3(β + γ)

0 0 0 1

0
(βζ4 + α) βζ5ζ2ζ3
+2βδ(1− ζ4)ζ6ζ3

βσgζ1ζ3ζ4
+ασgζ1ζ3

−δ2ζ2ζ3ζ6










x

+






0
(β + γ)ζ3

0
−δζ2ζ3




u, (5)

from which a convex model of the form (4) is found with
r = 26 = 64 new functions hi(x) and new pairs (Ai, Bi).

Again, some of the 64 pairs (Ai, Bi) are given below; their
extreme values are taken from table 2.

Table 2. Some values for (5)

i ζ1 ζ2 ζ3 ζ4 ζ5 ζ6

1 0.989 0.966 524.0988 0.000 -2.588 -0.777

16 0.989 0.966 579.019 0.067 2.588 0.777

32 0.989 1.000 579.019 0.067 2.588 0.777

64 1.000 1.000 579.019 0.067 2.588 0.777

A1 =






0 1 0 0
0 2.67 −48.88 −0.70
0 0 0 1
0 −2.10 70.65 0.27




 , B1 =






0
34.695

0
−13.162




 ,

A16 =






0 1 0 0
0 −2.87 −54 0.77
0 0 0 1
0 2.37 82.46 −0.29




 , B16 =






0
38.331

0
−14.541




 ,

A32 =






0 1 0 0
0 −2.93 −55.90 0.77
0 0 0 1
0 2.43 82.46 −0.30




 , B32 =






0
38.331

0
−15.055




 ,

A64 =






0 1 0 0
0 −2.93 −56.55 0.77
0 0 0 1
0 2.43 83.41 −0.30




 , B64 =






0
38.331

0
−15.055




 .

3. CONTROLLER DESIGN VIA LMIS

What is the convenience of writing the nonlinear model
(1) in a convex form (4)? As it will be shown in this
section, convexity allows using a quadratic Lyapunov
function of the form V (x) = xTPx to perform con-
troller design via sufficient LMI conditions. The proposed
control law, known as parallel distributed compensation
(PDC), is a nonlinear generalization of the ordinary state
feedback:

u(t) =
r∑

i=1

hi(x)Fix(t), (6)

where hi(x) are the same nonlinear convex functions of
the convex model (2) or (5), depending on which r = 32
or r = 64. Notice that if a common gain F is used, (6)
reduces to ordinary state feedback because

∑r

i=1
hi = 1.

Once (6) is substituted in (4) we have the following
closed-loop system:

ẋ(t) =

r∑

i=1

r∑

j=1

hi(x)hj(x) (Ai +BiFj)x(t), (7)

where convexity of the sums have been used to stack them
at the left.

Now, consider a quadratic Lyapunov function candidate
V (x) = xTPx, P = PT > 0. Taking its time derivative
and omitting arguments when convenient, leads to

V̇ =xTP ẋ+ ẋTPx,

=xTP

r∑

i=1

r∑

j=1

hihj (Ai +BiFj)x

+

r∑

i=1

r∑

j=1

hihjx
T (Ai +BiFj)

T
Px

=

r∑

i=1

r∑

j=1

hihjx
T
(
P (Ai +BiFj)+(Ai+BiFj)

TP
)
x.

Thus, due to convexity of functions hi and hj , V̇ < 0 is
guaranteed if for (i, j) ∈ {1, 2, . . . , r}2 the following holds

PAi + PBiFj +AT
i P + FT

j BT
i P < 0

⇐⇒ AiX +BiMj +XAT
i +MT

j BT
i < 0, (8)

provided X = P−1 and Mj = FjP
−1. Thus, the origin

of the nonlinear system (1) under the PDC control law
(6) is asymptotically stable if ∃X = XT > 0 such that
LMIs (8) hold. Once these LMIs are solved via any convex
programming tool such as the LMI Toolbox (Gahinet
et al., 1995) or SeDuMi (Sturm, 1999), the gains in the
PDC control law (6) are given by Fi = MjX

−1 and the
Lyapunov matrix is P = X−1.

Due to the fact that hihj = hjhi in double convex
sums as those found above, it is possible to find less
conservative LMI conditions to guarantee V̇ < 0. One
popular option which does not require additional decision
variables, is programming (Tuan et al., 2001):

2

r − 1

(
AiX +BiMi +XAT

i +MT
i BT

i

)

+
(
AiX +BiMj +XAT

i +MT
j BT

i

)

+
(
AjX +BjMi +XAT

j +MT
i BT

j

)
< 0 (9)
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instead of (8), for each (i, j) ∈ {1, 2, . . . , r}2.

In this report, two PDC controllers of the form (6)
were designed: one is based on the convex model with
5 nonlinearities (2); the other one on the model with 6
nonlinearities (5). Recall that, regardless of the convex
representation, the nonlinear model is fully taken into
account with no approximations involved.

Moreover, the LMI framework allows easily incorporating
restrictions such as decay rate η > 0, which increases the
rate of convergence while augmenting the magnitude of
the control signal (Tanaka and Wang, 2001):

V̇ ≤−2ηV⇐AiX+BiMj+XAT
i +M

T
j BT

i +2ηX < 0. (10)

To compensate a possible excess on the magnitude of the
input signal |u(t)|, the following LMIs can be added in
order to guarantee that actuator limits are not surpassed
(Tanaka and Wang, 2001):

|u(t)| ≤ µ ⇐

[

1 xT (0)
x(0) X

]

≥ 0,

[
X MT

j

Mj µ2

]

≥ 0, (11)

where x(0) is the initial condition.

As happens with any set of inequalities, LMI conditions
corresponding to different objectives (stabilization, decay
rate, input constraints, etc.) can be programmed together
without further adaptations; if feasible, all the objectives
involved will be met. For the performance conditions
above, sum relaxations as those in (9) can also be
adopted.

Since the LMI conditions (10) and (11) are only sufficient,
an important issue is the computational complexity of
the LMI problem. Such complexity can be established in
terms of the number of scalar decision variables Nv and
the number of LMI rowsNL. Considering conditions (10)
and (11), computational complexity indexes are given by

Nv = nx (nx + 1) + rnxnu

NL = r2nx + (nx + 1) (r + 1) + 2,

where nx is the number of states, nu is the number of
inputs, and r is the number of rules.

4. SIMULATION AND REAL-TIME RESULTS

The LMI problems have been solved by using Se-
DuMi (Sturm, 1999) and the YALMIP toolbox (Lof-
berg, 2004) within a MATLAB R2009b platform. Sim-
ulations and implementations have been performed us-
ing the files developed by Quanser which are based on
Simulink/MATLAB and Wincon 5.2 (Quanser, 2006).

The PDC control laws obtained via the LMI methods
above have been applied to the original nonlinear model
for simulation; the provider simulation files were first
used (Quanser, 2006) to guarantee a safe real-time im-
plementation. As it is usually the case, an adequate
behaviour in simulation may not straightforwardly trans-
late into the same performance when applied in real-time
to the plant. Whenever the control performance in real-
time conditions was unsatisfactory, controller redesign
was made: if not enough actuator energy was involved,
decay rate was maximized; if the actuator signal was over
the permitted values, input constraints were employed.
Simulation and real-time results below correspond to a

0 1 2
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Fig. 2. Angle x3 (solid-line) and its upper- and lower-
bound (dashed-lines) of non-perturbed system (5-
nonlinearity case): simulation (left), real-time (right)

decay rate of η = 0.25 and input constraint of µ = 22.
The closed-loop behaviour has been tested under two
situations:

i) without perturbations, and
ii) with a systematic perturbation occurring at t = 5

seconds, which consists on adding 4 volts to the
control input u(t).

4.1 The 5-nonlinearity case

The nonlinear model (2) where 5 nonlinearities were
rewritten in a convex form is employed in this section.
The fact that only 5 nonlinearities were used implies
that the number of pairs (Ai, Bi) is 2

5 = 32, which may
suppose a numerical advantage over the 6-nonlinearity
case. This is indeed true, but it must be taken into
account that a reduced number of nonlinearities produce
convex representations whose model pairs (Ai, Bi) (the
only ones involved in the LMIs) are “further” amongst
them. In other words, though both representations are al-
gebraically exact and equivalent to the original nonlinear
system, the “corners” of the convex representation (i.e.,
the pairs (Ai, Bi)) are not the same. Therefore, there is
a tradeoff between the size of the numerical problem and
its feasibility (Boyd et al., 1994).

The controller design based on LMIs (8), (10), and
(11), through the Tuan relaxation (9) yielded a feasible
solution. Due to space limitations, only the Lyapunov
matrix and some of the controller gains are given:

P =






0.0032 0.0078 0.1325 0.0244
0.0078 0.0272 0.4561 0.0844
0.1325 0.4561 14.3922 1.6289
0.0244 0.0844 1.6289 0.2818




 , F1=






0.6350
2.2342
78.3384
8.0987






T

,

F8=






0.3510
1.2466
58.6170
4.7811






T

, F16=






0.3479
1.2357
58.4687
4.7449






T

, F32=






0.1991
0.7203
45.3534
3.0389






T

.

The stabilization of x3 (angle of the vertical beam w.r.t.
the upright position) and the control signal u(t) are
shown in Figs. 2 and 3, respectively. In each plot, simula-
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Fig. 3. Control law u (solid-line) and its upper- and lower-
bound (dashed-lines) of non-perturbed system (5-
nonlinearity case): simulation (left), real-time (right)
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Fig. 4. Angle x3 (solid-line) and its upper- and
lower-bound (dashed-lines) of perturbed system (5-
nonlinearity case): simulation (left), real-time (right)

tion results are shown at the left side whereas real-time
ones are displayed at the right. The initial conditions

have been set to x(0) = [0 0 12.5◦ 0]
T
. Note that the

bounds employed for the convex representation (operat-
ing regime) as well as the control saturation of u(t) are
not exceeded, even in real-time. These simulations and
real-time implementations were undisturbed whereas the
results in Fig. 4 correspond to the perturbed case; clearly,
the control scheme is able to successfully deal with the
latter.

4.2 The 6-nonlinearity case

When the model (5) is employed (which, again, we insist,
is the same as the original nonlinear model), 26 = 64
pairs (Ai, Bi) arise. With these pairs, LMIs (8), (10), and
(11), altogether with the Tuan relaxation (9) were found
feasible. Again, only the Lyapunov matrix and some of
the controller gains are given for brevity:
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Fig. 5. Lyapunov function V (x) in simulation (left) and
angle x3 (solid-line) and its upper- and lower-bound
(dashed-lines) of non-perturbed system in real-time
(right): 6-nonlinearity case
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Fig. 6. Angle x3 (solid-line) and its upper- and
lower-bound (dashed-lines) of perturbed system (6-
nonlinearity case): simulation (left), real-time (right)

P =






0.0178 0.0116 0.2760 0.0376
0.0116 0.0227 0.5284 0.0745
0.2760 0.5284 14.5259 1.8392
0.0376 0.0745 1.8392 0.2680




 , F1=






1.3979
2.9469
82.2753
10.7664






T

,
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


0.1703
0.6919
22.1566
2.0755






T
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

0.1539
0.6635
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




T

, F64=






0.1561
0.6678
21.5449
1.9837






T

.

As mentioned before, this system has been tested with
and without perturbations: for the former the Lyapunov
function as well as the controlled angle x3 are shown in
Fig. 5; for the latter, the plant is perturbed at t = 5
seconds and initialized at x(0) = 0. Figures 6 and 7
display the state x3 as well as the control input u(t)
behaviour, respectively. It can be noticed that the state
x3 leaves the origin when the perturbation appears,
nevertheless it is driven back to equilibrium point x = 0.
Moreover, the bounds |x3| = 15◦ and |u(t)| = 22 are not
surpassed.
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Fig. 7. Control law u (solid-line) and its upper- and
lower-bound (dashed-lines) of perturbed system (6-
nonlinearity case): simulation (left), real-time (right)

Note that, the 5-nonlinearity case overcomes the 6-
nonlinearity one, that is: a) in the presence of perturba-
tions, the amplitude of the angle x3 is lower than the 6-
nonlinearity case; b) the angle x3 returns faster to the ori-
gin (see figures 4 and 6); c) the computational complexity
of the 5-nonlinearity case is Nv = 138, NL = 4263, while
for the 6-nonlinearity case is Nv = 266 and NL = 16711.

5. CONCLUSIONS

An LMI-based nonlinear control methodology has been
presented and applied to the Furuta pendulum, both in
simulation and real-time. Two cases have been addressed:
5 and 6 nonlinearities. The results show that considering
5 nonlinearities instead of 6 provides a better perfor-
mance. Also, the use of 6 nonlinearities requires more
computational effort, which may lead to numerical prob-
lems. The proposed approach has been successfully tested
under perturbations; it is based on a variety of exact
convex representations of the model nonlinearities which
leads to LMIs when combined with the direct Lyapunov
method. It has been shown that LMI framework allows
performance measures to be straightforwardly incorpo-
rated in the controller design.
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