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Abstract: Biohydrogen production represents a real alternative to the energetic problem, indeed, the
21st century is called the century of the hydrogen. However, once a biohydrogen production process has
been developed, it must be optimized in order to maximize the resulting production rate. In this context,
we propose a simple heuristic optimization strategy based on the relation between the organic loading
rate and the hydrogen production rate. A nonlinear optimization problem is first solved to maximize
the hydrogen production rate by optimizing the flow rate at the reactor input. Since the organic loading
rate depends on both, the flow rate and the substrate at the reactor input, a robust observer is used to
estimate this last concentration. Finally, an anti-windup super-twisting controller tracks the maximum
productivity computed by controlling the flow rate at the reactor input. Simulations demonstrate the
feasibility of this strategy for future implementation in a real process.

Keywords: Biohydrogen production, model-based optimization, Luenberger observer, super-twisting
algorithm.

1. INTRODUCTION

Biological production of hydrogen (biohydrogen), using (mi-
cro) organisms, is an area of technology development that
offers the potential production of usable hydrogen from
a variety of renewable resources. Biological systems pro-
vide a wide range of approaches to generate hydrogen, and
include direct biophotolysis, indirect biophotolysis, photo-
fermentations, and dark-fermentation (Levin et al., 2004).

Once a biological process to produce hydrogen has been
developed, the operational conditions have to be optimized in
order to achieve a desirable process performance.

In the last decade, optimization methods have been developed
in order maximize the hydrogen production into fermenter
bioreactors. For example, Aceves-Lara et al. (2010) apply
model predictive control (MPC) to optimize the hydrogen
production in continuous anaerobic digesters using the influent
flow rate as the main control variable. Huang et al. (2012)
apply fuzzy control-based real-time optimization of pH and
temperature to achieve the best growing environment and
hydrogen production rate control as well as enhance hydrogen
production into a dark fermentation reactor.

This article presents an improved version of the heuristic op-
timization strategy to maximize on-line the hydrogen produc-
tion into a dark fermenter proposed by Ramı́rez et al. (2015).
In such work, a non-linear programming (NLP) optimization
problem was formulated, considering the relation between the
hydrogen production rate (HPR) and the organic loading rate
(OLR) as objective function, and the flow rate at the reactor
input as optimization variable. Since the OLR depends on
both, the flow rate and the substrate at the reactor input, this
last concentration was maintained constant.

Nevertheless, in real applications the substrate concentra-
tion does not remain constant along the bioreactor operation.
Hence, an observer is used in this work to estimate the sub-
strate concentration and estimate therefore the OLR. This OLR
estimation allows us to solve the NLP problem and compute
the maximum HPR. Furthermore, a super-twisting controller
is used to track this maximum HRP (considering the optimal
flow rate as initial condition).

The biohydrogen production process considered in this work,
depicted in Figure 1, has two inputs: the substrate concentra-
tion (an uncontrolled input) and the flow rate (a controlled
input) at the reactor input. On the other hand, the total gas
flow rate and the hydrogen fraction at the reactor output are the
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measured outputs. Using these measurements, the produced
hydrogen flow rate can be calculated.

Fig. 1. Biohydrogen production process scheme.

The rest of the article is organized as follows: in Section 2
the model of the hydrogen production bioreactor is presented.
In Section 3 the optimization strategy proposed is explained
in detail. Section 4 is devoted to simulate the optimization
strategy and to discuss the results obtained. In section 5 some
conclusions about the work presented in this article are stated.

2. MODEL OF THE BIOREACTOR

The anaerobic hydrogen production reactor considered in this
work is modeled, as proposed by Aceves-Lara et al. (2008) and
Torres Zúñiga et al. (2015), by the following set of ordinary
differential equations (ODE):
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where Glu, Ace, Pro, Bu, EtOH , X , CO2 and H2 represent
the concentrations in gL−1 of glucose, acetate, propionate,
butyrate, ethanol, biomass, carbon dioxide and hydrogen, re-
spectively, in the liquid phase. The vector r describes the
kinetics of the involved biological reactions (in gL−1d−1), D
is the dilution rate (d−1) and qCO2,gas and qH2,gas the gas flow
rates of carbon dioxide and hydrogen expressed in gL−1d−1,
respectively. Finally, K ∈ R8×2 represents the matrix of
pseudo-stoichiometric coefficients.

The reaction pathway is described by two reactions occurring
in parallel. Thus, the vector r is composed of the specific
glucose uptake rate multiplied by the biomass concentration
in the reactor:

r =

 µmax1Glu

KGlu1 +Glu
µmax2Glu

KGlu2 +Glu

X
where µmax,l is the maximum specific growth rate of the
microorganisms in g[Glu]g[X]−1d−1 and KGlu,l is the half-
saturation constant in gL−1.

Furthermore, the differential equations for the gas phase with
constant gas volume are:
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MH2
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ρCO2
= kLaCO2

(CO2 −KH,CO2
pCO2,gas) (7)

pCO2,gas = CO2,gasRTreac (8)

where CO2,gas and H2,gas are, respectively, the carbon diox-
ide concentration, inmolL−1, and the hydrogen concentration,
in gL−1, in the gas phase.

As shown in equation (4), the total gas flow at the reactor
output is the sum of the hydrogen gas flow plus the carbon
dioxide gas flow. The carbon dioxide and the hydrogen gas
flow rates are calculated by considering the transfer of the gas
out from the liquid phase to the gas phase. The carbon dioxide
and the hydrogen concentrations at the liquid-gas interface in
equilibrium are calculated by considering the Henry law. The
pressure of each gas component can be calculated using the
ideal gas law for the two gases.

The physico-chemical, pseudo-stoichiometric and kinetic pa-
rameters used in this work are defined in (Torres Zúñiga et al.,
2015).

3. OPTIMIZATION STRATEGY

3.1 Optimization problem

Ramı́rez et al. (2015) propose an heuristic optimization strat-
egy to maximize the hydrogen production in a dark fermenter
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by considering the effect of the organic loading rate (OLR) on
the hydrogen production rate (HPR). In order to describe the
effect of the OLR on the HPR, a model was proposed as:

HPR = a3OLR
3 + a2OLR

2 (9)

On the other hand, the OLR is defined as:

OLR =
QinGluin

V
(10)

In order to maximize the HPR, the following non-linear pro-
graming (NLP) problem was then proposed:

max
Qin

HPR(OLR(Qin, Gluin))

such that:
HRTmin ≤ HRT ≤ HRTmax

(11)

whereHRT represents the hydraulic retention time. As can be
regarded in equation (11), the equation (9) is used as objective
function. Furthermore, the flow rate at the reactor input (Qin)
was selected as the optimization variable.

In order to compute the OLR, the substrate at the reactor input
(Gluin) must be provided. Since measuring Gluin on-line is
not practical, Torres Zúñiga et al. (2015) proposed a robust
observer to estimate it.

3.2 Estimation of the substrate at the reactor input

Let the state vector x ∈ R4 be defined as:

x =

 Glu
X
H2

H2,gas


Let us define in addition u = Qin as a controlled input and
w = Gluin as a disturbance.

A reduced nonlinear system can be defined as:

ẋ(t) = f(x, u, w) (12)

By linearizing the non-linear model (12) around an operating
point (x∗, u∗, w∗), a reduced linear state space model is ob-
tained as:

˙̄x(t) = Ax̄(t) +Buū(t) +Bww̄(t) (13)

where:

• A is the Jacobian matrix Jf (x)|(x∗,u∗,w∗).
• Bu is the Jacobian matrix Jf (u)|(x∗,u∗,w∗).
• Bw is the Jacobian matrix Jf (w)|(x∗,u∗,w∗).
• x̄(t) = x(t)− x∗.
• ū(t) = u(t)− u∗.

• w̄(t) = w(t)− w∗.

As mentioned in Section 1, the output of the system is the
hydrogen gas flow rate at the reactor output. Thus, according
to equation (4) , the measured output is defined as:

y(t) = Cx(t) =
RTamb

Patm − pvap,H2O
V

(
ρH2

MH2

)
(14)

By regarding equations (5) and (6) it is easy to verify that
matrix C takes the following form:

C =
[

0 0 cH2
cH2,gas

]
with:

cH2
=

RTambV kLaH2

(Patm − pvap,H2O)MH2

cH2,gas
= −R

2TambV kLaH2
KH,H2

Treac
(Patm − pvap,H2O)MH2

The measured output is defined in terms of x̄ as:

ȳ(t) = y(t)− Cx∗ = Cx̄(t) (15)

The following Luenberger observer is proposed to estimate x
without knowledge of w:

˙̄̂x(t) = Aˆ̄x(t) +Buū(t) + L
(
ȳ(t)− ˆ̄y(t)

)
(16)

On the other hand, the glucose dynamics is modeled by:

˙Glu = k11r1 + k12r2 −D(Glu−Gluin)

˙Glu = DGluin + h(Glu,X)

where h(Glu,X) = k11r1 + k12r2 − DGlu. DGluin is
unknown but it is an absolutely continuous function of time,
its dynamics can therefore be modeled as:

d(DGluin)

dt
= δ2(t)

Thus, the dynamics of Glu and DGluin is modeled by the
following ODE system:

˙Glu = DGluin + h+ δ1(t); |δ1| ≤ c1, c1 > 0
˙(DGluin) = δ2(t); |δ2| ≤ c2, c2 > 0

(17)

Note that δ2(t) captures the uncertainties about DGluin while
δ1(t) captures the uncertainties about r, Glu and X .

A super-twisting observer is then proposed to estimate Gluin
as:
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˙̂
Glu = ˆ(DGluin) + h(Glu,X) + γ1φ1(ε1)

˙̂
(DGluin) = γ2φ2(ε1)

(18)

where:

ε =

[
ε1
ε2

]
=

[
Glu− Ĝlu

DGluin − ˆ(DGluin)

]

φ1(ε1) = |ε1|1/2sign(ε1)

φ2(ε1) =
1

2
sign(ε1)

Since the super-twisting observer (18) needs the glucose and
the biomass concentrations to compute the term h(Glu,X)
and the error ε1, it uses the estimations x̂1 and x̂2 made by
the Luenberger observer (16).

3.3 Output tracking problem

Now, we address the problem of tracking the HPRmax com-
puted by solving the NLP problem (11). Let us first define
σ = HPR−HPRmax and

HPR =
QH2,gas

V
=

y

V

By derivating σ with respect to time, it is easy to verify that σ̇
has the form:

σ̇ = g1(x, t) + g2(x, t)u(t) (19)

The system described by the dynamics (12) and the controlled
output σ has therefore relative degree 1.

The following anti-windup super-twisting controller is pro-
posed to track the HPRmax computed by solving the NLP
problem (11):

u = −λ|σ|1/2sign(σ)+u1, u̇1 =

{
−u, |u| > umax

−αsign(σ), |u| < umax

(20)

The precedent super-twisting control law guarantees the ap-
pearance of a 2-sliding mode σ = σ̇ = 0 in system (19), which
attracts the trajectories in finite time. The control u(t) enters in
finite time the segment [−umax, umax] and stays there. It never
leaves the segment, if the initial value is inside at the beginning
(Shtessel et al., 2014).

Hence, the flow rate at the reactor input computed according
to the equation (20) will drive the HPR to the value HPRmax.

3.4 Optimization algorithm

The algorithm proposed to maximize on-line the hydrogen
production in the dark fermenter consists of the following
steps:

(1) Estimate the glucose concentration at the reactor input
using the coupled observer (16)-(18).

(2) Using the Gluin estimation, solve the NLP problem (11)
to compute the maximum HPR and the optimal Qin of
the biohydrogen production process.

(3) By considering the HPRmax (as reference) and the
optimal Qin (as initial value) computed in the precedent
step, use the super-twisting controller (20) to track the
maximum hydrogen production rate by controlling the
flow rate at the reactor input.

4. RESULTS AND DISCUSSION

In the following simulations, the value of the parameters of
the model (1), used in addition by the coupled observer (16)-
(18), were taken from (Torres Zúñiga et al., 2015), while the
parameters of the model (9), used as objective function in the
NLP problem (11), were taken from (Ramı́rez et al., 2015).
On the other hand, the super-twisting controller parameters
considered were λ = 0.05 and α = 0.5.

The model of the hydrogen production reactor and the opti-
mization strategy were simulated during 67 days in MATLAB
considering a sample period T = 4h. Furthermore, the ODEs
were solved using the ode15s solver. The observer started after
one day from the process beginning. The optimization problem
was solved and the maximum HPR was tracked after three day
from the process beginning, once the observer converged.

Figure 2 shows the glucose at the reactor input (solid blue
line) considered in this simulation and the glucose estimated
(dashed red line) by the coupled observer (16)-(18). As can be
observed, the estimations are very close to the ’real’ concen-
trations along the simulation.

Figure 3 shows the model (9) in solid blue line, while in
red balls the optimal points (HPRmax, OLRopt) computed
by solving the NLP problem (11) for 5h ≤ HRT ≤ 12h.
Points around HPRmax = 10L[H2]L−1d−1 correspond to
substrate estimations around Ĝluin = 10gL−1. Points close
to HPRmax = 15L[H2]L−1d−1 correspond to substrate esti-
mations around Ĝluin = 15gL−1. Points aroundHPRmax =
20L[H2]L−1d−1 correspond to substrate estimations around
Ĝluin = 20gL−1. It must be pointed out that the maximum
HPR of the model (9) is not reached because the constrain in
the NLP problem (11) was defined for a minimum HRT of 5h.
This is due to the fact that the Luenberger observer (16) was
designed to estimate the vector state x around HRT = 8h.
Simulations for HRT < 5h demonstrated that the Luenberger
observer does not converge and therefore, the substrate at the
reactor input is not correctly estimated.

Once an optimal point (HPRmax, OLRopt) has been com-
puted by solving the NLP problem (11), the maximum produc-
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Fig. 2. Estimation of the input glucose concentration. In solid
blue line the ’real’ concentration and in dashed red line
the estimated one.

0 20 40 60 80 100 120
0

5

10

15

20

25

OLR (g[COD]/Ld)

P
ro

d
u

c
ti
v
it
y
 (

L
[H

2
]/

L
d

)

 

 

Model

Optimal point

Fig. 3. Model HPR(OLR) and optimal point computed by
solving the NLP problem (11).

tivity (HPRmax) is tracked by the super-twisting controller
(20), considering Qin,opt as initial value. Figure 4 shows in
dashed red line the ’maximum’ HPR tracked and in solid blue
line the ’real’ HPR of the bioreactor. As can be regarded, the
super-twisting controller correctly tracks the HPRmax refer-
ence along the simulation, with a maximum transitory period
of three days. It must be pointed out that in the time periods
where a small error is observed ( < 1L[H2]L1d−1 ), it is due
to the saturation of the control input (the NLP imposes that the
minimum HRT allowed is 5h).

Finally, Figure 5 shows the HRT of the bioreactor along the
simulation. As can be observed, the super-twisting controller
(20) correctly saturates the flow rate at the reactor input (
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Fig. 4. Productivity of the hydrogen production bioreactor. In
solid blue line the ’real’ productivity and in dashed red
line the ’maximum’ one tracked.

(HRT = V/Qin)), since the minimum HRT computed is 5h,
as imposed by the constraint of the NLP problem (11).
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Fig. 5. HRT computed by the super-twisting controller (20).

5. CONCLUSIONS

In this work, an heuristic optimization strategy to maximize the
productivity into a hydrogen production bioreactor was pre-
sented. The strategy consists of solving a nonlinear optimiza-
tion problem to compute the maximum hydrogen production
and the optimal flow rate at the reactor input and then, to track
the maximum productivity by controlling the flow rate at the
reactor input via a super-twisting controller.

The strategy is simple to implement and even if it consists of
three element, the optimizer, the observer and the controller,
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the computing resources needed is not a critical issue. The
observer represents the largest challenge because it consist of
6 ordinary differential equations. On the other hand, the non-
linear optimization problem has only one objective function,
one optimization variable and one constraint, while the super-
twisting controller has just the form of a proportional-integral
controller.

Simulations demonstrate the feasibility of the strategy for hy-
draulic retention times over 5h. The observer estimates cor-
rectly the glucose at the reactor input, the nonlinear optimiza-
tion problem computes the maximum productivity and the
optimal flow rate at the reactor input respecting the constraint,
and the super-twisting controller correctly tracks the maxi-
mum productivity respecting the minimum hydraulic retention
time allowed. However, it is well known that the hydrogen
production process reach an optimal operation at hydraulic
retention times around of 4h. The Luenberger observer has to
be therefore redesigned to correctly estimate the glucose and
the biomass into the bioreactor around that hydraulic retention
time.
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