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Abstract: In this work we present a method to find the parameters of a fractional differential
equation based on a Genetic Algorithm, considering only the knowledge of the structure of the
equation and the input-output signals. Examples are given in order to show the effectiveness

of the proposed method.
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1. INTRODUCTION

Dynamical systems described by integro-differential frac-
tional equations have been gaining attention in recent
years, even though the concept was first proposed at the
end of the 17th century and taken into account as a
research subject until 1884. This interest relies on the
fact that several classes of physical systems, especially
those including diffusion dynamics or friction, as well
as memory and hereditary properties in materials and
systems can be better and more succinctly described by
fractional derivatives and integrals, rather than using
integer ones (Caponetto, 2010). As usually the integer
integral or derivative are represented by operators J"
and D™ respectively, where n € N; so, fractional inte-
gral and derivative are typically described also as the
operators J? and D%, where o, 3 € R, or even «, 3 € C.

Moreover, the same tools used to analyse linear sys-
tems with integer differentials and integrals, such as
the Laplace transform and the Fourier analysis can be
extrapolated and used in fractional ones.

Some methods have been proposed to approximate the
solution given by a fractional differential equation of
fractional differential system (FOS), from a higher-
order transfer function with integer derivatives (Man-
souri et al., 2010; Oustaloup, 1991) to the analysis of the
step response (Dorcdk et al., 2002), similar to the case of
first and second-order systems. However, in most cases
the parameters of the FOS are assumed known or ob-
tained from a physical analysis of the system, especially
regarding the fractional values a and f.

Recently, some approaches have been proposed to iden-
tify the parameters of a FOS. For example, by expanding
the fractional differential equation to a larger integer sys-
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tem (Sabatier et al., 2006), assuming that the fractional
values « or 8 are known. When also this parameters are
unknown, approximation methods have been proposed
for the case of fractional-order chaotic systems (Yuan and
Yang, 2012) by using a particle-swarm optimization and
a numerical approximation of the solution of the FOS.
In this sense, also Genetic Algorithms (GAs) have been
proposed to tune the parameters of the PI*D# control
(Cao et al., 2005). As it can be seen, the identification
of a fractional order system is still an open and active
research problem.

In this work we present a method to identify the param-
eters of a Fractional-Order System (FOS) based on GAs
given that only the structure of the fractional differential
equation is known as well as its input and output sig-
nals are available. The paper is organized as follows: In
Section 2, a brief description of fractional calculus and
systems are given. In Section 3, the algorithm for the
identification of the parameters using a GA is presented,
and in Section 4 results are shown in order to illustrate
the effectiveness of the method. Finally, conclusions are
discussed in Section 5.

2. FRACTIONAL ORDER SYSTEMS

From a mathematical point of view, a fractional order
integral or derivative is defined as an extrapolation of
the definition of the integer-order integral or derivative
of a certain function f(t), seen as a general fractional
differential operator D®. However, there exist different
definitions of this operator, that in general do result
in different solutions. Two of the main approaches and
most generally used in control systems are the Riemann-
Liouville and the Caputo fractional operator (Gorenflo
and Mainardi, 1997).
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Recall that, for n € ZT—{0}, given the Cauchy’s formula
for the repeated integration

Jnf(t)g/at/a“...LT"_lf(T)dT-.-dngrl

oo | o=

if n is changed from an integer value to any real (and even
complex) value « € R, then the definition is extrapolated
in the so called Riemman-Liouville fractional integral,
defined as

(e 1 ! a—1
0 = g [ SO @)
where I'(w) is the Gamma function of w € C. From

the previous definition, the Riemann-Liouville fractional
differential operator D% is then defined as

1 dn

n

@t () N
DOf(t) = { Fnma) @7 Jo Goyarr=mdT, a € (n—1,n), n €

a=né€N,

(3)
Note that this operator is a left-inverse for (2) (Caponetto,
2010), i.e., D*(JOf(t)) = f(¢£).

A slightly different, but also valid definition of the
differential operator, is given by (Caputo, 1967) and
called the Caputo Fractional Differential Operator:

d" f(r)

t s
D f(t) = { F(nl_a) fgn(t_Tng" dr,a € (n—1,n), neN

a=necN.

(4)
These two definitions are not always interchangeable. In
the area of control systems, generally the Caputo’s defini-
tion is preferred, rather than that of Riemann-Liouville,
since in the first one the initial conditions typically asso-
ciated with physical interpretation are involved, such as
the integer derivative at ¢ = 0. In the latter, the initial
conditions involved do not have a clear physical inter-
pretation (Podlubny, 1998). In this work, the Caputo’s
definition is used for the fractional derivative.

Following this definition, a fractional-single-order differ-
ential equation for an SISO system with input u(¢) and
output y(t) is defined as

D%y(t) + ay(t) = bu(t) ()

The solution for this equation can be found using the
Laplace transform and, consequently, the transfer func-
tion in the form

Y(s) b
N Cosa 417

(6)

and an analytical method or a numerical approximation
given by an expansion of the transfer function (6) may
be used.
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3. IDENTIFICATION ALGORITHM

Consider a system given by the mapping y(t) = H (u(t)),
and a fractional differential equation to approximate it
given by

DG(t) + ag(t) = bu(®). (7)
where both the input and the ouput are bounded and
continuous signals. The objective of the algorithm is
to minimize, given finite time signals u(t), y(t) whose
measurements are taken in ¢ € [0,77], the function cost

T1

; (y(t) — 5(t))%dt,

C = (8)

where a, b and o are the unknown parameters.

In this work it is considered that bounds for a, a and
b are given, that is, @ € [a, @], a € [a,a], b € [a,b].
Now, let each parameter be codified by binary genes. For

esentation purposes, unsigned 8 bits are considered,
but clearly it can be extrapolated to larger values and
even signed values. If a,a,b > 0 and given that the
quantization of each parameter v > 0 such that v €
[v,7] with quantization step A = %, where bits is

the number of bits, then the quantization and binary
representation is given by

¥ = Y = Q2,pits(7) = { {X + ;J }base—Q .9

So, the binary representation of each bound is, in list
form:

a—a, =1{0,0,0,0,0,0,0,0}
a—a, ={0,0,0,0,0,0,0,0}
b—b, ={0,0,0,0,0,0,0,0}
a— ap = {1,1,171,1,1,1,1}
a—a,=1{1,1,1,1,1,1,1,1}
b—by={1,1,1,1,1,1,1,1}
a— ay = Q2 pits()
a— ap = Q2 pits(a)
b— by = Q2.pits(b)

8.1 Genetic Algorithms

Genetic Algorithms (GAs) are methods that belong to
a the so-called Evolutionary Algorithms (EAs), that are
inspired on the processes present on natural evolution,
where the different genes between individuals in a cer-
tain species are combined, inherited and even mutate
from one generation to the next. Then the conditions
of the environment, combined with the properties of
each individual, determine which genes survive and are
transferred to the next generation.

Octubre 14-16, 2015.
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In general, a GA is focused on the optimization of a
certain objective function of fitness function, and the
objective is to find a solution (or a set of) that minimizes
it sub-optimally via an iterative process, given a set of
candidate solutions, called population. Its individuals,
where the free parameters are coded in genes, are then
classified by their fitness value. The properties or free
parameters of each candidate are coded in chromosomes,
sometimes in a binary fashion, and this set is called a
gene.

In order to create the next generation, each new individ-
ual is created either by: copying the genes of the best
ones (elitism), called the elite genes; randomly changing
some of the code (mutation); combining the genes of
different genes of the previous generation (called parents
and the combination crossover), stochastically of by fol-
lowing a certain rule (for example, where the probability
of crossover is a function of the fitness value); or by
combining the previous methods.

3.2 Proposed GA

For this work, the identification algorithm based on a
GA is given by the following steps:

i: Choose the number of genes N, for each generation.

ii: Initialize chromosomes for «, a, b by random binary
values.

iii: Choose the N, genes that achieve the lower value
of the cost function (8) and pass them to the next
generation (elitism)

iv: Generate the remanent genes by a 50% crossing of
each chromosome, as shown in Fig. 1.

v: Mutate the non-elite genes by shifting to the right
each chromosome with a probability of %PM.

vi: Repeat until a minimum design value for (8) is
fulfilled or maximum generation number is reached.

In this method, the design parameters are Ny, N, and
%PM.
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Fig. 1. Gene crossing algorithm.
4. RESULTS

In order to show the effectiveness of the proposed
method, some simulation results are shown. In first place,
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System Parameters
« a b
a) 03 04 05
b) 0.8 02 0.6
c) 09 09 0.1

Table 1. Parameters for (10)

it is considered an inherent fractional system. In second
place, as fractional systems are usually approximated by
high-order systems, it is considered a linear system with
multiple poles. Lastly, a nonlinear system based on an
anesthesia model is shown. In all cases the algorithm
and required simulations were run on a PC with Intel
i5 processor using the fractional differential algorithms
reported by Diethelm and Freed (1998); Garrappa (2010)
and considering 16 bits coding for all chromosomes in
genes.

4.1 Fractional system.

In first place, consider a fractional system with initial
conditions in the form

(D + a)y(t) = bu(t), ,y(0) = 0. (10)

Three different parameter set were chosen, as shown in
Table 1. In order to find the set of parameters &, a, b that
best fitted the given input-ouput data, the algorithm was
run considering in all cases 30 genes, 30 generations,
4 elite genes and a mutation probability of 80%. The
results for these simulations are shown in Fig. 2. As it can
be seen, the identified fractional differential equations do
effectively approximate the response of the given system.

4.2 High-order system.

For this case, it is considered a system to be identified
with the transfer function with multiple poles:

25

G(s) = GropE

The identification results with 30 genes, 30 generations,
PM=80% are shown in Fig. 3. The obtained fractional
differential equation is

D°82494(+) 4+ 0.60397(t) = 0.2902u(t). (11)
It can be seen that the fractional system does identify the
dynamics of a higher-integer-order differential equation
with a small error, inherent to the fact that the order is
simplified by the model.

4.8 Nonlinear system: Anesthesia

The modeling of the dynamics of the anesthesia admin-
istered to a patient, concretely by propofol, can lead
to a better knowledge of its stability, evolution, and
design of better controllers. In this sense, one of the most
used models is a pharmacokinetic and pharmacodynamic
4th order model with unknown parameters (Copot and

Octubre 14-16, 2015.
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Fig. 2. Identification of a fractional system. Simulation
results. In each case, the upper-left figure is the
input signal, the upper-right is the output of the
best gene, the lower-left is the RMS evolution in
each generation, and the lower-right is the error

Yd — Y-

Tonescu, 2014). As the structure and the parameters
become quite complex, a reduced FOS could lead to a
simpler model, given that some delays and dynamics
could be grasped by it. In this sense, simulations were run
for a fourth-order compartmental model (Schnider et al.,
1998; Marsh et al., 1991). The identification algorithm
was run with 20 genes and 30 generations. The results are
shown in Fig. 4, obtaining a final RMS error of 0.373, and
FOS parameters & = 0.9650, @ = 0.1922 and b = 0.4941.
It can be seen that, although a reduced order model is
obtained, it still captures the essential dynamics of the
system.
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Fig. 4. Identification for an anesthesia system
5. CONCLUSIONS

In this work we have shown a simply method for identi-
fication of a single-fractional order differential equation.
In first place, each of the parameters of the linear frac-
tional equation are coded into genes, and by using both
elitism and mutation during a number of generations, an
identified set of parameters is achieved. Simulations for
a fractional order equation, a high-order integer-order
differential equation and a nonlinear system were shown
in order to illustrate the effectiveness of the proposed
method. Further work will focus on also identifying the
nonlinear parameters in the case of Wiener or Hammer-
stein models with a fractional-order equation.
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