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Abstract: This paper takes a well-known microscopic traffic model due to Helly. This model
includes the relative velocity and the relative distance between two vehicles moving on a lane
as its main variables, forming a simple and accurate expression to describe the car-following
phenomena. We have conducted analysis for this model in order to design two possible control
schemes, a PI Regulator and an Integral-Optimal Control, which none of them has been designed
for a model like that presented here. Through suitable simulations, we have also performed
comparissons between these two proposals, with some interesting results and proper observations
on the features of each one of such designs suggested.
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1. INTRODUCTION

Car-following models are representations of the system
formed by two cars, one in the front and other in the
back, moving in a single lane. Each vehicle has its own
velocity: vL(t) for that car in front (leader) and vf (t) for
the car in the back (follower), but this last one is affected
by the first if it is asummed that passings are not allowed
(Treiber et al., 2000).

Car-following phenomena are recognized as a base to
understand traffic congestion. From a local description of
pairs of vehicles it is possible to recreate cumulative effects
in a lane or even in a network (Panwai and Dia, 2005), in
such a way that going from relatively simple expressions
it is possible to model real complex systems.

Natural progress has marked a trend in developing more
accurate expressions for such phenomenon, implying more
sofisticated models with an increasing number of terms and
parameters to take into account since the first attempts to
emulate the behavior of pairs of vehicles running on a lane
(Olstam and Tapani, 2004).

However, it is always advantageous to succced in a balance
between accuracy and simplicity in order to obtain precise
enough calculations with low computation effort. Looking
back on the first and sufficiently well established models of
L.A. Pipes (1953) and W. Helly (1959), it is possible to
notice that they both posses an intuitive support as well
as a well-defined theoertical base.

? This research has been supported by UAEMex fonds.

These two models include few parameters and, once cal-
ibrated and tested, they approach to reality with very
little error. A next natural step is the design of control
schemes for regulation purposes. The direct variable to
be controlled is the velocity vf (t), that now should be a
function of the distance and the velocity of the vehicle
in front, regarding safety restrictions. This regulation can
be used to obtain a safety breaking system for avoiding
possible collisions due to distractions, or for developing
autonomous driving cars (Göhring et al., 2013).

Autonomous driving is a topic that is becoming very
popular in recent years (Wang et al., 2013). Even though
it needs the integration of different subsystems, the main
module is that in charge with the regulation of the velocity
vf (t). There are many algorithms that deal with such tasks
based, for example, on multi-objective optimal schemes
(Swaroop, D. 1994). Those approaches comply with the
purposes implied in an autonomous driving. However,
they are rather complex, and we have turn to simple
models that we think they are not fully studied, like those
presented here.

This document is organized as follows: in the next section
Pipes’ and Helly’s models are described and compared,
but focusing on the second one. The distinct forms to
describe this model will be useful to design different control
schemes as seen in Section 3 which, as far as we know, they
have not been reported even though their simplicity. The
performance of these schemes are presented in Section 4,
where the simulated variables show interesting responses
specially when they face disturbances. At the end, some
pertinent conclusions are included.

Congreso Nacional de Control
Automático, AMCA 2015,

Cuernavaca, Morelos, México.

293

Reserva de Derechos No. EN TRÁMITE, ISSN. EN TRÁMITE



Fig. 1. Block diagram for Pipes’ model as suggested in
equation (1).

2. DESCRIPTION OF MODELS

2.1 Pipes’ Model

One of the first and simple approaches to the car-following
phenomena is due to L. A. Pipes (1953). His proposal is
very intuitive since it relates the acceleration v̇f (t) of a
follower driver with the difference of the velocity of the
car in front vL(t) and the car behind vf (t)

dvf (t)

dt
= λ [vL(t)− vf (t)] (1)

where λ is a sensistivity parameter, related with the
reactive behavior of the driver in the follower car (Fig. 1).

Calibrating this parameter (Rosas-Jaimes et al., 2013)
gives a quantitiy in the range λ ∈ (0, 1], where values closer
to 0 represent less reactive drivers, and values approaching
1 represent those drivers with a more reactive behavior.
This model has been tested and, even though it is known
that it fails for some conditions, most of the time it behaves
quite accurately (Rosas-Jaimes et al., 2014).

However, one caveat about the behaviour of this model is
that the only stimulus taken into account is the relative
speed between cars. Some studies have shown that drivers
also consider a safety distance between bumps to avoid
collisions (Chung et al., 2005).

Another shortcoming of equation (1) is that the arithmetic
difference between simultaneously equal but non-steady
velocities sometimes result in zero values, giving zero ac-
celeration dvf (t)/dt, which is not realistic either (Ioannou
et al., 2008).

2.2 Helly’s Model

The car-following model due to Helly (1959) extends
Pipes’ model introducing a term that takes into account
the distance separation between the involved cars

dvf (t)

dt
= λv [vL(t)− vf (t)] +

+ λx [xL(t)− xf (t)−D(t)] (2)

In equation (2) λv is the same sensitivity parameter as
in Pipes’ equation (1) that modifies the difference of
velocities, meanwhile λx is another similar parameter for
the additional term of the difference between the leader’s
position xL(t) and the follower’s position xf (t), which is
in turn affected by a desired distance D(t). This last term
adjusts the driver’s response in such a way that it depends
on the relative distance xR(t) = xL(t)−xf (t) and not only
on the relative velocity vR(t) = vL(t)−vf (t), giving a more
realistic approach.

Fig. 2. Helly’s model as suggested in equation (4)

Equation (2) is a well-known expression in Transportation
and Traffic. With the relative quantities of vR and xR
defined, this expression can be written in an alternative
way

dvf (t)

dt
= λvvR(t) + λx [xR(t)−D(t)] (3)

From equation (3) it is possible to obtain equation (4)
focusing on xR(t)

ẋR(t) = −λx
λv

[xR(t)] +
1

λv
[v̇f (t) + λxD(t)] (4)

Fig. (2) depicts by blocks this approach to Helly’s model.

From equation (4) it possible to make some interesting
observations:

• The relative distance xR(t) is a state and also an
output suitable to be measure.

• ẋR(t) = vR(t).
• The time derivative of the follower’s velocity v̇f and

the desired distance D(t) are inputs.
• The acceleration of the follower v̇f is an estimable

quantity.
• The desired distance can be viewed as a function de-

termined beforehand or as a quantity to be estimated.

As can be seen, this model permits convenient manipula-
tion. Another way to express Helly’s model is by giving
it a second order treatment. It is now evident that this
model is fully represented by these two equations:

v̇f (t) = λvvR(t) + λxxR(t)− λxD(t) (5a)

ẋR(t) = vR(t) (5b)

But, vR(t) = vL(t) − vf (t) as previously mentioned, and
then equations (5) can be written as

v̇f (t) = −λvvf (t) + λxxR(t) + [λvvL(t)− λxD(t)] (6a)

ẋR(t) = −vf (t) + vL(t) (6b)

which can be express as a matrix form

[
v̇f
ẋR

]
=

[
−λv λx
−1 0

] [
vf
xR

]
+

[
λv −λx
1 0

] [
vL
D

]
(7)

where the state is formed by the velocity of the follower vf
and the distance between the vehicles xR. Besides, leader’s
velocity vL and the desired distance D are properly indi-
cated as inputs. It is convenient to keep the output as
xR(t) in this case too, and then the output is

y = [ 0 1 ]

[
vf
xR

]
(8)
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Fig. 3. Block diagram for output feedback applied to
Helly’s model based on (4)

3. CONTROL SCHEMES

3.1 Output Feedback

By a proper device 1 , it is possible to obtain the distance
xR(t) between a leader vehicle and a follower one.

This distance must not be less than a desired distance
D(t) for safety purposes. This quantity can be treated as
a reference for a control to be developed.

Fig. 3 shows the plant that represents Helly’s model by
equation (4), included in a feedback control scheme, where
the function F stands for a controller designed to make
xR(t) → D(t). A clasical feedback is one achieved by
pole placement like a proportional plus integral (PI), a
proportional plus derivative (PD) or a proportional plus
integral plus derivative (PID) controller.

It possibly comes to mind to tune up the gains for such
controllers by a method like Ziegler–Nichols, but in this
case the plant, Helly’s model, is a first order system
represented by the transfer function (9), it does not has
a delay and it cannot oscillate by moving its only pole.

xR
u

=
1
λv

s+ λx

λv

(9)

A PD controller tends to accelerate the response, and a PI
controller tends to improve the steady state error. The
first of them could generate an uncomfortable or even
a dangerous situation if the acceleration achieved is too
high. On the other hand, disturbances and variations on a
distance D(t) that change with time could be better track
if the difference with xR(t) is minimized.

Following this reasoning, a function F as in equation (10)
is proposed

F = k
s+ a

s
= k +

ka

s
(10)

In this way, a pure integrator is compensated by a very
near zero, increasing the order of the control system and
improving the response because the diference D(t)−xR(t)
tends to zero.

It has been determined that it is not convenient for
this case to use a PID controller. In a real situation, it
requieres more effort to construct and to operate such a
regulator, and its performance is not completly justified
when compared with the simpler PI regulator presented.

1 There are a number of devices used to measure the separation
between a car that follows another in front of it, using radar, or
paterrn recognition from the image of a camera, to say some of the
most common.

3.2 Optimal Control

In order to design an optimal control scheme by output
feedback, let the desired distance D(t) be the reference
signal and let the leader vehicle velocity vL(t) a distur-
bance.

The input vector u(t) to affect the system is then

u =

[
u1
u2

]
=

[
vL

k2 (D − xR) + k1vf

]
(11)

in such a way that u2 is equivalent to

u2 =
[
k1 k

′
2

] [ vf
xR

]
− k′2D (12)

where k′2 = −k2.

In order to develop an optimal control, it is possible to
find out a solution for Riccati Equation (13)

ATP + PA− PBR−1BTP +Q = 0 (13)

where the matrices A, B, R, and Q are defined as

A =

[
−λv λx
−1 0

]
B =

[
λv −λx
1 0

]

Q =

[
λx 0
0 λv

]
R =

[
λv/2 0

0 λx

]
where A is the matrix of coefficients of the state and
B is the matrix of coefficients of the inputs, for the
system described by equation (7). Matrices Q and R are
symmetric and positive definite, as can be noticed by the
elements with values λv and λx included in them.

This equation has values in such a way that minimizes the
performance index expressed by equation (14)

J =

∫ ∞
0

(
xTQx+ uTRu

)
dt (14)

To satisfy equation (13) it is sufficient that P has values
as in (15)

P =


−λv

λv + λx
+

√
λ2v + λvλx + λ2x
λv + λx

0

0

√
2

2
λv

 (15)

With the defined and calculated values, then it is possible
to obtain a gain matrix K to achieve an optimal state
feedback

K = R−1BTP =

=


−2λx
λv + λx

+
2
√
λ2v + λvλx + λ2x
λv + λx

√
2

2
λx

λv
λv + λx

−
√
λ2v + λvλx + λ2x
λv + λx

0

 (16)

Notice that, in this way, the matrix gain K is in close
relation with the sensitivity parameters λv and λx.

To improve the response and to vanish the error signal in a
more efficient way, an integral block with a gain GI = 0.25
is added to the control scheme, which is depicted complete
in Fig. 4.
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Fig. 4. Block diagram for optimal-integral control for Helly’s model

Notice that this is a state feedback scheme and it should
be necessary to know the state [vf xR]T . Fortunately, by
the proposed second order model, these two quantities are
measurable by proper devices. Besides, as u(t) = −Kx
then the performance index can be written as in (17)

J =

∫ ∞
0

(
xTQx+ xTKTRKx

)
dt =

=

∫ ∞
0

xT
(
Q+KTRK

)
x dt (17)

The argument in (17), M = xT
(
Q+KTRK

)
x, is ex-

pressed by λv, λx and the state, being J a quadratic
expression in which

J =

∫ ∞
0

[
M11v

2
f + (M12 +M21) vfxR +M22x

2
R

]
dt (18)

This expression has quadratic and cross terms of vf and
xR, in close analogy with kinetic and potential energy.

This is related with the nature of J and the physical
meaning of the terms in it, where the minimization of
this performance index is directly related with the opti-
mization of the energy terms in which the velocity vf (t)
of the follower and the separation between cars xR(t) are
involved.

Finally, we catch the attention in the fact, based on what
we have seek and found, that none of this controllers have
been designed and implemented taking Helly’s model as a
base, instead of the simplicity of the model and the direct
processes of reaching such regulation schemes.

4. SIMULATIONS

In this section some convenient simulations are carried out
for both control schemes presented in the last section. All
these simulations were perfomed with the values λv = 0.5
and λx = 0.7, which are common in practice (Lee, 1966),
(Burnham et al., 1974).

For the PI control (10) it is proposed that

a = 0.1λx

λv

k = 5

For a first simulation, a desired distance D(t) = 6 m has
been chosen, with an initial separation of D(0) = 10 m.

Fig. 5 shows the behavior of the relative distance xR(t)
between two vehicles in a car-following scenario affected by
this control. In Fig. 5 it is also possible to notice that the
transient has a very high change at the beginning, which
represents a high acceleration achieved by the follower, but
then this signal tends to smooth until it reaches the desired
value in a soft manner.

Fig. 5. Response of the relative distance xR(t) in relation to
the desired distance D(t) = 6 m, using a PI controller.

If a PD controller were used, it is possible that this
accceleration could be higher, which represents a condition
that could be uncomfortable or even dangerous for any
possible travellers in that car.

The desired velocity D(t) is not necessarily constant and
it could be convenient that it varies.

Leaving all the values used the same, but making D(t) a
senoid, with a frequency of ω = 1 rad/s and an amplitude
of ±2 m gives the behaviour depicted in Fig. 6.

As in the previous case, the acceleration at the beginning
is high for the follower and similar remarks can be done for
this situation. On the other hand, it can be seen that the
controller tries to track the senoid D(t). However, due to
the design values, it never succeeds in achieving a zero
error, and it can be seen that the follower has a slow
response whenever the leader is changing velocity vL(t).
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Fig. 6. Response of the relative distance xR(t) in relation
to the desired distance D(t) = 2 sin(t) + 6 m, using a
PI controller.

If now the interest is on a variable value for the speed and
acceleration of the leader car, while the desired distance is
keep in a constant value, then Fig. 7 plots an oscillatory
behavior due to the acceleration and desceleration due
to the leader vehicle, but that the controller tries to
compensates making that the fluctuation of the relative
distance xR surrounds the desired value of D.

All this trajectories can be viewed as a fair balance, in
which the tracking is sufficently well behaved, taken into
account that a more rapid response could originate higher
accelerations as mentioned earlier.

Fig. 7. Response of the relative distance xR(t) in relation
to the velocity of the leader vL(t) = 5 sin(t) + 30 m,
using a PI controller.

In the case of the integral-optimal control, Fig.8 shows
the response of the relative distance between vehicles in
comparison with a constant value for D(t) of 6 m. If the
velocity of the leader is vL(t) = 30 m/s (a little more
than 100 km/hr), it can be seen that xR(t) increases at
the beginning, implying a slow motion of the follower
while the leader moves faster when starting, and then
an acceleration of such amount that the desired value is
reached in a soft manner during a process of about 20
seconds.

Fig. 8. Response of the relative distance xR(t) in relation
to the desired distance D(t) = 6 m, for an integral-
optimal control.

To establish proper comparissons, the distance D(t) is
varied as was the case for the PI regulator, in such a way
that D(t) = 2 sin(t) + 6 m and vL(t) is kept at 30 m/s.

Fig. 9 shows the evolution of the relative distance between
cars as this variable is tried to be adjusted by the control.
As can be seen, the tracking is not perfect, mainly by
the same reason explained in the case of the PI control:
the acceleration must not be high for the follower. The
transition at the very beginning denotes drastic changes
in order to achieve tracking.

Fig. 9. Response of the relative distance xR(t) in relation
to the desired distance D(t) = 2 sin(ωt) + 6 m, while
VL(t) is 30 m/s, for an integral-optimal control.

In order to show another point of view for this scheme, now
a fluctuation in the leader’s velocity in such a way that
vL(t) = 5 sin(t) + 30 m/s is applied, leaving the desired
distance D(t) constant at 6 m. It is noticeable that the
control scheme tryies to adjust the response in a way that
is depicted in Fig. 10.

In this case, the leader car is accelerating and breaking in
an oscillating way, and the control is trying to adjust the
trajectory of the follower in order to track it.

Congreso Nacional de Control
Automático, AMCA 2015,

Cuernavaca, Morelos, México.

297

 Octubre 14-16, 2015.



Fig. 10. Response of the relative distance xR(t) in relation
to the desired constant distance D(t) = 6 m, while
vL(t) = 5 sin(t) + 30 , for an integral-optimal control.

As can be seen, the relative distance xR(t) oscillates
arround the desired distance D(t) = 6 m.

5. CONCLUSIONS

We have shown the well-known Helly’s model as an ex-
tension of the Pipes’ model. The former adds a relative
distance term as a way to improve the accuracy of what is
seen in reality about the car-following phenomena.

Helly’s model is presented here not only in its most famous
form as a differential equation, but also as a block diagram
and as a state representation, a treatment that is not
reported in other media as far as we know.

These representations lead directly to the design of control
schemes in order to regulate the velocity developed by the
follower vehicle. In this way, the desired distance D(t)
and the leader’s velocity vL(t) are seen as inputs or as
disturbances.

The controllers here presented behave well enough. One of
them is a PI regulator. The behavior achieved minimize the
difference D(t)−xR(t) in a reasonable period of time, with
a reasonable amount of acceleration in the cases where the
desirable distance D(t) stayed constant and when varied
as a senoid signal.

For the integral-optimal regulator, similar results have
obtained. However, this scheme asures that the energy cost
is the minimum to use for regulating the movement of the
follower, due to the optimal part, and the error between
xR(t) and D(t) tends to zero, due to the integral part.

The integral-optimal regulator can be seen as more precise
arrengement to control the system, but the PI regulator is
easier to implement. It will depend on the especifications
wanted, which of these control is used in a real application.

It is important to remark that thess control schemes have
not been found reported for a model like Helly’s, even
though its simplicity is appealing and the desing process
is very direct. This is an important observation for those
possible applications in which could be easy to implement
some of these regulators.

Finally, it is also desirable to show stability analysis to
those schemes presented here, as well as to establish their
relationship with phenomena that imply disipative effects,
for example. However, because the limited space, those
studies must be further presented in future documents.

REFERENCES

Burnham, G., Seo, J., Bekey, G. A. (1974) Identification
of Human Driver Models in Car Following . IEEE
Transactions on Automatic Control, Vol. Ac-19, No. 6,
pp. 911–915.

Chung, S. B., Song, K. H., Hong, S. Y. and Kho,
S. Y. (2005) Development of Sensitivity Term in Car-
Following Model Considering Practical Driving Behav-
ior of Preventing Rear End Colission. Journal of the
Eastern Asia Society for Transportation Studies, No. 6,
pp. 1354–1367.
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