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Abstract: In this work, a dynamic feedback control law based on the well known “Twisting” algorithm
is under study. Dynamic compensation is added to the Twisting algorithm, in order to use position
feedback only, and keep properties such as finite time stability. In some mechanical applications, an
observer or a differentiator design is required for control purposes when the whole state space is not
available for measurement. An alternative solution for this problem is proposed: a finite time stable
algorithm that uses dynamic position feedback. Indeed, this new proposal does not require to measure
or estimate another signal but the position of the mechanical system. In the stability analysis, strict
nonsmooth Lyapunov functions are studied in order to show finite time stability and robustness. Based
on the proposed algorithm, a control law for a Two Rotor Aerodynamical System affected by bounded
external perturbations is designed.
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1. INTRODUCTION

In the last decades, sliding mode algorithms (SOSM) have
become very important for Variable Structure Systems (VSS)
theory because of their properties (see for example Fridman
and Levant [2002], Shtessel et al. [2007], SV et al. [1986]).
One of the first SOSM algorithms, the twisting algorithm,
became very popular due its advantage to consider Coulomb
friction of a mechanical system as part of the controller, and
it is well known that this algorithm has properties such as
finite time stability (FTS) and robustness against bounded
external perturbations (see for example Orlov [2008]). In order
to design a control law based on this algorithm, all state space
variables must be available for measurement. This restriction,
in some cases, could be a disadvantage. In some mechanical
systems, for example, there is no physical space for a velocity
sensor, or the sensor is too expensive, among others. This
situation can be solved using the derivative of the position,
i.e. an observer or a differentiator design must be considered
(J. Davila and Levant [2005], Bhat and Bernstein [2005],
Drakunov and Utkin [1995], J.J. Slotine and Misawa [1987]).

With this in mind, the stabilization problem of a nonlinear
dynamical system is more complex, since two algorithms
must be designed, the observer/differentiator algorithm and the
control law. Many problems arise when an observer design
is used, for example: an exact or partial copy of the plant is
needed, or the proof of a separation principle theorem has to
be considered, among others (see J. Davila and Usai [2009],
Floquet and Barbot [2007], Levant [2005] ).

Some sliding mode based algorithms propose an alternative
to this problem, like suboptimal algorithm (G. Bartolini and
Usai [1997], Bartolini et al. [1998]). This algorithm use only
position data and is based on a contraction principle and the
? This work was supported by CONACYT grant 53869. Departamento de
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time optimal bang-bang control method. However, the stability
analysis only ensures finite time convergence to the sliding
manifold of the state trajectories.

In (H. Sira-Ramirez [2010]) a dynamic feedback is considered
in order to design a linear observer-linear controller-based
robust output feedback scheme for output reference trajectory
tracking tasks in a class of fully actuated nonlinear mechanical
systems whose generalized position coordinates are measur-
able. In (H. Sira-Ramirez [2010]) the idea of dynamic feedback
is considered in order to apply an observer for the accurate
linear estimation of nonlinear disturbances inputs affecting the
creation of local sliding regimes, on a given sliding mani-
fold, for Single-Input Single-Output (SISO) systems with lim-
ited control authority (for more information (H. Sira-Ramirez
[2012])). Moreover, the idea of dynamic feedback is used to
stabilize the buck converter in (H. Sira-Ramirez [2013]).

In this work, a dynamic feedback design is considered in order
to use only position data, and is applied to non linear systems
of relative degree two, affected with external bounded pertur-
bations. This algorithm (MTA: Modified Twisting Algorithm)
increase the order of the system but ensures finite time stability
of the point (x, y, z) = (0, 0, 0). An advantage of this proposed
algorithm is that an observer design or an algorithm to estimate
the derivative is not necessary, constituting an interesting alter-
native to an observer based control law, for example twisting
algorithm or even PID control law.

In applications for fully and under actuated mechanical sys-
tems affected by Coulomb friction, these proposed control law
provide the desired performance in spite of significant uncer-
tainties in the system description and external perturbations, as
it is typically the case in control of electromechanical systems
with complex hard-to-model nonlinear phenomena. Strict non
smooth Lyapunov functions will be used to prove the stability
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of the proposed algorithm (for example, see Bacciotti and
Ceragioli [1999], Moreno and Osorio [2008]).

In section 2 the problem statement is presented: the stabiliza-
tion of a second order dynamical system affected by exter-
nal bounded perturbations. In section 3, some background is
shown in order to emphasize the main contribution. In section
4, the stability analysis of the homogeneous nominal closed
loop system is shown, and the robustness of the law control is
under study. In all cases, finite time stability for the closed loop
system is concluded. In section 5 to support theoretical results,
a numerical example is shown and in section 6, the conclusions
of this work are presented.

2. PROBLEM STATEMENT

The dynamics of a mechanical system affected by external per-
turbations is governed by the following state space equations

ẋ= y

ẏ = f(x, t) + τ + δ(x, y, t), x, y ∈ R, (1)
The known part of the system dynamics is represented by
the piece-wise function f(x, t) (such as the inertia, gravity
forces, among others) while δ(t, x, y) denotes the unknown
part (such as uncertainties, external/parametric perturbations,
among others) and the control signal is represented by variable
τ . The uncertainty term is considered bounded by a positive
constant M , i.e

|δ(x, y, t)| < M (2)
The solutions of all systems of differential equations are un-
derstood in the Filippov‘s sense Filippov [1988]. For system
(1) the following control design is as follows

τ = U − f(x, t) (3)
where U is the proposed algorithm. A homogeneous control
law is proposed in order to achieve finite time stability using a
non smooth Lyapunov function. Consider the nominal system
(1) and the control law

U =−αsign(x)− βsign(z)

ż =−asign(x)− bsign(z) (4)
Then, the closed loop system is as follows

ẋ= y

ẏ =−αsign(x)− βsign(z) + δ(x, y, t)

ż =−asign(x)− bsign(z) (5)

It is straightforward to verify that the point of interest of the
system (5) is the point (x, y, z) = (0, 0, 0). In the following
section some mathematical background is given in order to
explain clearly the main contribution of this work.

3. BACKGROUND

In Santiesteban [2015] the following result is presented,
Theorem 1. Santiesteban [2015] Let the parameters of the
switched system (5), be such that inequalities

α> a ∗max

{
2
β

b
,
β

b
+ ε, 2

b

β

}
a > b+ ε > 0 (6)

are satisfied. Then, the trajectories of system (5) converge lo-
cally uniformly in finite time to the point (x, y, z) = (0, 0, 0).

Notice that in this theorem the stability of system (5) is local.
In the following section the stability analysis is not only global,
but an estimation of the convergence time of the trajectories of
system (5) to the point (x, y, z) = (0, 0, 0) is given.

4. STABILITY ANALYSIS

Consider the Lyapunov function for the disturbed system (5)

V (x, y, z) =
1

2

(
y2 +

αβ

ab
z2
)
− β

b
yz

+

(
α− β

b
a− γsign(xy)

)
|x|

=
1

2
ρTPρ+

(
α− β

b
a− γsign(xy)

)
|x| (7)

where ρT = [y z] and

P =

 1 −β
b

−β
b

αβ

ab

 (8)

In order to show that P is a positive definite matrix, det(P ) =
αβ
ab −

β2

b2 > 0 must be satisfied at all time. From equation (7),
notice that the coefficient of term |x|, αa > β

b + γ also must
be satisfied, then if inequalities (6) are satisfied then function
(7) is positive definite. Now, let’s calculate the time derivative
of V (x, y, z). The function V (x, y, z) is locally Lipschitz, and
it is differentiable at any point except on the set defined by
S =

{
(x, y, z) ∈ R3|x = y = 0

}
. Notice that the set S does

not contain trajectories of system (5). This means that V̇ (x, y)
computed along the trajectory (x(t), y(t), z(t)) exists almost
everywhere. The time derivative of equation (7) along the
trajectories of system (5) is given by

V̇ (x, y, z) = y
(
−αsign(x)− βsign(z) +M

)
+
αβ

ab
z
(
−asign(x)− bsign(z)

)
+

(
α− β

b
a− γsign(xy)

)
sign(x)y

− β

b

{
y
(
−asign(x)− bsign(z)

)}
− β

b
z
(
−αsign(x)− βsign(z) +M

)
(9)

After some algebraic simplifications,

V̇ (x, y, z) =−β|z|
(
α

a
− β

b
−Msign(z)

)
− (γ −M) |y| (10)

Notice that the inequalities
α

a
>
β

b
+M ; and γ > M (11)

must be satisfied in order to show that V̇ is negative semi-
definite. Then point (x, y, z) = (0, 0, 0) of system (5) is stable
if inequality (6) holds. Since no sliding motion appears on
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axis x or z, except the origin x = y = z = 0, where
V̇ (x(t), y(t), z(t)) = 0, relation (10) remains in force for
almost all t. Indeed, let s1 = x that implies ṡ1 = y, then
s1ṡ1 < 0 is not satisfied at all time. However, let s2 = z that
implies ṡ2 = −asign(x)− bsign(z), then

s2ṡ2 = −|z| (asign(xz) + b) < 0, (12)
i.e., if b > a, sliding motion appears at the surface s2 = z.
This is the reason that inequality a > b > 0 must be satisfied at
all time. Moreover, as mentioned before, the trajectories of (4)
cross the switching lines x = 0 and z = 0 everywhere except
the origin x = y = z = 0 so that all the system trajectories are
uniquely continuable on the right.

Remark 1. If a > b > 0 is not satisfied then sliding mode in
the surface s2 = z can be present. When System (5) hits the
sliding surface, i.e. z = 0⇒ ż = 0, it can be described as

ẋ= y

ẏ =−αsign(x) (13)
If x 6= 0, the solution of system (13) is as follows

y2 + α|x| = C, C ∈ IR (14)
It is well known that this system has two poles in the origin and
generates a persistent oscillations. Indeed, system (13) is weak
against external perturbations and it can be unstable/stable
when it is affected by uncertainties.

The qualitative behavior of the nominal system (5) is depicted
in Figure 1. Due to the parameter subordination (2), the
velocity vectors of (5) point toward the same region in the
switching lines

S1 = {(x, y, z) ∈ IR3 : x > 0, z = 0}
S2 = {(x, y, z) ∈ IR3 : x < 0, z = 0}
S3 = {(x, y, z) ∈ IR3 : x = 0, z > 0}
S4 = {(x, y, z) ∈ IR3 : x = 0, z < 0} (15)

4.1 Main results

Theorem 2. Let the parameters of the nominal switched sys-
tem (5) be such that conditions

α>max

(
β;
β

b
a+ γ + γ

2
3
2

)
;

(γ)
2

(
α− β

b
a− γ

)
> 4γ22

a > b > 0 (16)
are satisfied, where γ2 > 0. Then system (5) is globa-

lly uniformly finite time stable around the point (x, y, z) =
(0, 0, 0). Moreover, an estimation of the convergence time is
given by

treach ≤
4

λ4
λ

3
4
3W

1
4 (x(0), y(0)) (17)

with

λ4 =min

{
β

(
α

β
− a

b

)(
α− a

b
β − γ

)
, (18)

β

(
α

β
− a

b

)
αβ

ab
, β

(
α

β
− a

b

)
β

b
, γ2 (α− β) ,

1

4
γ

}

Fig. 1. Qualitative behavior of system (5).

and λ3 = max

{
1, αβab ,

β
b ,
(
α− a

bβ − γ
)
, γ2

}
Based on the former theorem, the following result is presented
for the perturbed system (5),
Theorem 3. Let the parameters of the disturbed switched sys-
tem (5) be such that conditions

α>max

(
β +M ;

β

b
a+ γ + γ

2
3
2

)
;

(γ −M)
2

(
α− β

b
a− γ

)
> 4γ22

a > b > 0; γ > M (19)

are satisfied. Then system (5) is globally uniformly finite
time stable around the point (x, y, z) = (0, 0, 0) in spite of
bounded external perturbations. Moreover, an estimation of the
convergence time is given by

treach ≤
4

λ4
λ

3
4
3W

1
4 (x(0), y(0)) (20)

with
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λ4 =min

{
β

(
α

β
− a

b
−M

)(
α− a

b
β − γ

)
,

β

(
α

β
− a

b
−M

)
αβ

ab
, β

(
α

β
− a

b
−M

)
β

b
,

γ2 (α− β −M) ,
1

4
(γ −M)

}
(21)

and λ3 = max

{
1, αβab ,

β
b ,
(
α− a

bβ − γ
)
, γ2

}
A sketch of the proof of Theorem 3 is shown on Appendix I.

5. NUMERICAL EXPERIMENTS

In this section, the control problem known as tracking is
considered, using a rigid body mechanical system as a test bed
(Fig. 2). This system consists of a beam pivoted on its base
that it can rotate freely in both horizontal and vertical planes.
A mathematical model, based on Euler-Lagrange method, of a
similar system with aerodynamic control inputs is presented in
Mullhaupt et al. [2008]. Assuming control inputs as torques τ1
and τ2, the state equation of the system is given by

Iψψ̈ = τ1 − Cψψ̇ +
1

2
Icφ̇

2 sin(2ψ)

+Gs sin(ψ) +Gc cos(ψ)
(22)

(Iφ + Ic sin
2(ψ))φ̈ = τ2 − Cφ − Icψ̇φ̇ sin(2ψ)φ̇ (23)

Fig. 2. The one-link pendulum system.

where q is the angle made by the pendulum with the vertical,
m is the mass of the pendulum, l is the distance to the center
of mass, J is the moment of inertia of the pendulum about the
center of mass, g is the gravity acceleration, F is the friction
force, τ is the control torque, and δ(t, q, q̇) is the external
disturbance.

The control objective is to drive the given system to a known
trajectory in exact finite time, i.e.

ψ(t)− r(t) = 0. (24)
φ(t)− r(t) = 0. (25)

where r(t) = sin(t) even in the presence of an admissible
external disturbance. Let the tracking error be given by

e1(t) = ψ(t)− r(t). (26)

e2(t) = φ(t)− r(t). (27)

Considering (22) and (23) as independent systems, taking
inertial couplings and friction forces as perturbations and using
the control for system (22) in the form

τ1 = Iψ r̈ − α1sign(e1)− β1sign(z1)
−Gs sin(ψ)−Gc cos(ψ)

ż1 = −a1sign(e1)− b1sign(z1).
(28)

and for system (23) in the form

τ2 = −α2sign(e2)− β2sign(z2)
+(Iφ + Ic sin

2(ψ))r̈
ż2 = −a2sign(e2)− b2sign(z2).

(29)

the error dynamics can be written as follows, for system (22)

Iψ ë1 = −α1sign(e1)− β1sign(z1)− Cψψ̇
+
1

2
Icφ̇ sin(2ψ) +M

ż1 = −a1sign(e1)− b1sign(z1).
(30)

and for system (23)

(Iφ + Ic sin
2(ψ))ë2 = −α2sign(e2)− β2sign(z2)

−Icψ̇φ̇ sin(2ψ)− Cφφ̇+M
ż2 = −a2sign(e2)− b2sign(z2).

(31)

In order to show the performance of the proposed algorithm, a
comparison with twisting is considered. Parameters of Table 1
are considered.

Table 1. Model parameters

Parameter Value Unit
Iψ 40e-3 kg ·m2

Iφ 6.7e-3 kg ·m2

Ic 31.7e-3 kg ·m2

Cψ 6e-3 N ·m · s/rad
Cφ 2e-3 N ·m · s/rad
Gs -60e-3 N ·m
Gc -0.31 N ·m

The initial conditions for the model, selected for all experi-
ments, are fixed as ψ(0) = 1 rad, φ(0) = 1 rad, ψ̇(0) = 0

rad/s and φ̇(0) = 0 rad/seg for the positions and velocities,
respectively. the dynamics of the system in closed loop affected
by the bounded external perturbations. The numeric exercise
use αi = 8.5, ai = 2, βi = 1 and bi = 1 as gains of the control
law MTA. The positive constants αti = 8.5, βti = 6 denote the
gains of twisting algorithm, where i = 1, 2. Both simulations
exercises are affected by M = 0.5 N ·m as an uncertainty
term from t = 10 onwards. Also parametric perturbations are
considered, i.e. Ĩψ = 60e-3 kg ·m2, Ĩφ = 13.6e-3 kg ·m2 in
the controller design.

Figure 4 shows the error signal e1(t) and e2(t) and the control
input signal τ1(t) and τ2(t) for both cases. In both exer-
cises there is no optimization criteria but the compensation
of bounded external perturbations to fix gains controllers.
This simulations shows that MTA performance is as good as
twisting algorithm.

According to Theorem 3, conditions for globally finite time
stability (17) of TRAS mechanism are satisfied taking M = 1,
γ = 6.08 and γ2 = 0.21. Then λ4 = 1.27 and λ3 = 4.25.
Finally, the estimation of time converge (18) is treach ≤ 4.27
seconds.
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Fig. 3. Tracking stabilization of the one-link pendulum.

6. CONCLUSIONS

In this work, a globally uniformly finite time algorithm for
relative degree two systems using dynamic position feedback
was proposed. Moreover, a strict non-smooth Lyapunov func-
tion was proposed in order to estimate convergence time of the
closed loop system. The performance of the proposed algo-
rithm was shown by solving the tracking control problem of a
Two Rotor Aerodynamical System in spite of bounded exter-
nal and parametric perturbations. The closed loop mechanical
system showed to be robust and provide nice performance
in spite of unknown but bounded uncertainties. Moreover, a
comparison with twisting algorithm is presented in order to
show the closed loop behavior.
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7. APPENDIX I

Proof of theorem 1: In order to show finite time stability a non-
smooth candidate Lyapunov function, based on the former one,
is proposed. Let write the former function V (x, y, z) as follows

V (x, y, z) = η +

(
α− β

b
a− γsign(xy)

)
|x| (32)

where η = 1
2ρ
TPρ, and

P =

 1 −β
b

−β
b

αβ

ab

 (33)

Consider the candidate Lyapunov function for system (5)

W (x, y, z) =
1

2
V (x, y, z)2 + γ2|x|

3
2 sign(x)y

=
1

2
η2 + η

(
α− β

b
a− γsign(xy)

)
|x|

+
1

2

(
α− β

b
a− γsign(xy)

)2

x2 (34)

+ γ2|x|
3
2 sign(x)y

In order to show that V (x, y, z) is positive definite, the follow-
ing inequalities

α>max

(
β

b
a;
β

b
a+ γ + γ

2
3
2

)
(35)

must be satisfied. Moreover, in order to find an upper bound
for the candidate Lyapunov function, let η ≤ λ1(y + z)2, with
λ1 = max{1, αβab ,

β
b }, then

V (x, y, z) ≤ λ2(|x|
1
2 + |y|+ |z|)2 (36)

where λ2 = max{λ1, α− β
b a− γ} hence, an upper bound for

W (x, y, z)2 is as follows

W (x, y, z) ≤ λ3(|x|
1
2 + |y|+ |z|)4 (37)

where λ3 = max{λ2, γ2}.
Now, let’s calculate the time derivative ofW (x, y, z). Note that
W (x, y, z) is locally Lipschitz, and it is differentiable at any
point except on the set defined by S = {(x, y, z) ∈ R3|x =
y = 0}. Notice that the set S does not contain trajectories
of system (5). This means that Ẇ (x, y) computed along the
trajectory (x(t), y(t), z(t)) exists almost everywhere. The time
derivative of equation (7) along the trajectories of system (5)
is given by

Ẇ (x, y, z) = V (x, y, z)V̇ (x, y, z) (38)

− γ2|x|
3
2 (α+ βsign(xz) +Msign(x))

+ γ2|x|
1
2 y2

In order to show that Ẇ (x, y, z) < 0, it is clearly that the terms
−V (x, y, z)|z| and −V (x, y, z)|y| are negative definite if

α

a
>
β

b
+M ; γ > M (39)

and the terms

(γ −M)

(
α+

β

b
a− γ

)
|x||y|; γ2|x|

1
2 y2

1

4
(γ −M) |y|3 (α+ βsign(xz) +Msign(x))

(40)
are written as follows

−|y|

(
1

4
(γ −M) |y|3 − γ2|x|

1
2 y + ζ|x|

)

= −1

2
|y|ρTc Pcρc (41)

where ζ = (γ −M)
(
α+ β

b a− γ
)

, ρT = [|x| 12 y] and

Pc =

 1

8
(γ −M) −γ2

−γ2 2ζ

 (42)

then if det(Pc) > 0, the function Ẇ (x, y, z) is negative
definite, i.e. (γ −M)

2
(
α+ β

b a− γ
)
> 4γ22

In order to show finite time stability, Ẇ (x, y, z) is written as
follows

Ẇ (x, y, z) =−β
(
α

a
− β

b
−M

)
V (x, y, z)|z|

− γ2|x|
3
2 (α+ βsign(xz) +Msign(z))

− 1

4
(γ −M) |y|3 (43)

it is easy to see that

Ẇ (x, y, z)≤−λ4
(
|x| 12 + |y|+ |z|

)3
(44)

where λ4 is as inequality (21). Finally, writing Ẇ (x, y, z) in
terms of W (x, y, z) is

Ẇ (x, y, z)≤−λ4
(
W (x, y, z)

λ3

) 3
4

(45)

Then finite time stability of system (5) can be concluded. To
estimate an upper bound for convergence time , let us consider
the following comparison system

ω̇ = −aω 3
4 (46)

The solution of this system is ω(t) = (ω
1
4 (0) − 1

4at)
4, and

thus the estimation for reaching time is treach = 4
aω

1
4 (0).

Summing up, an estimation of an upper bound for the reaching
time of the system (5) can be calculated as equation (20).
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