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Abstract: In this paper a navigation system for a service robot based on a scheme of cooperative
behaviors, which control a mobile base and a mechatronic head, is proposed. The main idea is
to achieve a more cognitive control system through a strong interaction between base and head
behaviors, perception and task planning. Some behaviors depend directly on the perception
information and some others depend both on the task planning and perception, i.e. position
control is improved by incorporating artificial intelligence techniques. A Kalman Filter is used
for robot localization, nevertheless, since the filter is just a part of the behavior-based scheme,
it is turned on and off conveniently according to the environment representation. The use of the
mechatronic head improves significantly the navigation performance. Experimental results are
presented to show the effectiveness of the scheme.

Keywords: Mobile robots, autonomous vehicles, behavior-based robotics, navigation,
localization.

1. INTRODUCTION

In last years, research on navigation systems for mobile
robots has been focused in achieving more cognitive sys-
tems. For example Jae-Han et al. (2007) propose the use
of a semantic map from which a path is planned and the
localization of the robot is performed with an external
sensor network, which is not desirable for service robots.
Rawlinson and Jarvis (2008) developed a system that al-
lows the robot to reach a goal through topological instruc-
tions without the necessity of a previous map, nevertheless,
since no information is stored, there is no learning. In
Rogers et al. (2011) it is proposed to extract high-level
characteristics of the objects in the environment in order
to relate them with their semantic meaning. Weixing et al.
(2012) propose a method to navigate by recognizing arrows
and traffic signs.

Arambula and Padilla (2011) improves the obstacle avoid-
ance by incorporating a genetic algorithm for calculating
the optimal potential field constants. Other related works,
such as Palmeira et al. (2012) and González-Sarabia and
Alvarado (2012) develop control laws for position or path
tracking, nevertheless, they take odometry as the position
measurement and this is not desirable for service robots,
or they don’t present experimental results.

These works proposed several methods to enhance a nav-
igation system, nevertheless, none tested a complete sys-
tem. In this paper, a navigation system for a service robot,
Justina, is proposed. In section 2, the service robot Justina,
in which all algorithms were tested, is described. Section
3 describes the navigation system: a highly interactive
system composed by a path planner, a perception module,
a set of behaviors controlling both the mobile base and the
mechatronic head, and a localization subsystem containing
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a world representation and a Kalman filter for estimation.
In section 4 some results are presented and discussed and
finally, in section 5 conclusions and future work are given.

2. THE SERVICE ROBOT JUSTINA

Fig. 1. The service robot
Justina

Justina is a service robot
built at the Biorobotics
Lab of the Engineer-
ing School of the Na-
tional University of Mex-
ico. This robot and its
predecessors have been
participating in the Ro-
cobup@Home league since
2006 performing several
task like cleaning up a
room, serving drinks and
several other tasks that
the human beings ask
for. It is based on the
ViRbot architecture for
the operation of mobile
robots (Savage et al.,
1998). To accomplish all
these tasks Justina needs
a navigation system ca-
pable to take her from
one point to another in
a safely manner and that
means, with a safe ob-
stacle avoidance, an efficient path planning and with a
localization that allows her to know where she is in every
moment.

For sensing the environment, Justina counts with several
sensors: two laser range finders, a Kinect sensor, a stereo
camera and a directional microphone. Also, Justina has
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Fig. 2. The Navigation System

encoders in each motor (mobile base and its two arms).
The navigation system uses the Kinect sensor, lasers and
the mobile base encoders. Figure 1 shows the robot Justina
and the position of its sensors and actuators.

2.1 Hardware

Mobile base. Justina has a differential base that allows
motor control and encoder reading via RS232. This mobile
base has a maximum speed of 2.0 [m/s] in each motor and
the encoders give 8000 ticks per turn of the wheel.

Mechatronic head. The mechatronic head design is
based on the corresponding movements of the human
head: pan and tilt. It carries three sensors: the stereo
camera, directional microphone and Kinect sensor. The
pan and tilt movements allow to point these sensors
in the best direction to obtain more useful readings of
the environment. As will be described in section 3, the
mechatronic head and the Kinect sensor it carries are used
to improve the navigation system.

3. NAVIGATION SYSTEM

The proposed navigation system is composed of several
subsystems performing different tasks in different levels of
abstraction: a task planner, a set of behaviors controlling
the mobile base and another set controlling the mecha-
tronic head, a localization subsystem, which contains the
world representation and a Kalman filter for estimating
robot position, and a perception module, responsible for
processing the raw sensor data. Figure 2 shows a block
diagram of the different subsystems and its connections.
Following subsections explain each subsystem and the way
they interact between them.

3.1 Perception

Human perception is defined as the set of processes by
which we organize, recognize and make sense of the stimu-
lus we receive from the environment Sternberg and Stern-
berg (2012). Inspired on this definition we can say that
perception of robot Justina is the set of signal processing
algorithms used to extract, from raw sensor data, useful
information to deduce aspects of the environment. Infor-
mation generated by Justina’s perception module includes
object and face detection and recognition, landmark ex-
traction, speech recognition, detection of obstacles and
their positions, skeleton detection and propioception, that
includes odometry and position estimations of the head
and arms. Processing of data coming from the encoders is
also part of the perception process, or more specifically, of

Fig. 3. Variables used for odometry

the proprioception process. The navigation system uses the
subprocess of landmark extraction and obstacle detection.

3.1.0.1. Landmark Extraction Landmarks used for lo-
calization are line segments in the 3D space. They are
extracted from laser readings and point clouds generated
by the Kinect sensor, using an algorithm based on the work
of Yan et al. (2012). It consist of two main steps: clustering
the points according to its closeness and calculating the
line equation by Principal Component Analysis (PCA).

3.1.0.2. Obstacle Detection An important issue for a
safe navigation is the detection of obstacles with which the
robot could crash. Perception module extracts obstacles
from the laser readings using K-means algorithm. Detected
obstacles are represented by the perception module as
parallelepipeds with a XYZ position and its corresponding
dimensions width, depth and height. Also, detected obsta-
cles are use by the task planner to replan a path if there
is risk of collision.

3.1.0.3. Odometry Given a differential pair mobile base
of diameter L whose state is defined by three values

[x y θ]
T
, if initial conditions [x0 y0 θ0]

T
are known, then

the position can be calculated in an incremental form from
the distances traveled by each wheel. Consider the scheme
showed in figure 3 and the following variables and frames:

• Sl and Sr: Distances traveled by wheels left and right
respectively.

• L: Robot diameter.
• rICR: Distance from the robot center to the instant
center of rotation.

• OA: Absolute frame.
• OR. Robot frame. It moves with the robot and can
be obtained by rotating OA an angle of θ

Increments are calculated as

∆θ=
Sr − Sl

L
∆XR = rICR sin∆θ

∆YR = rICR (1− cos∆θ)
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Fig. 4. Behaviors controlling the mechatronic head

where

rICR =
Sl + Sr

2∆θ
These increments are w.r.t.OR and need to be transformed
into increments w.r.t. OA. Thus, robot’s absolute position
can be calculated as

XAk+1
=XAk

+∆XR cos θk −∆YR sin θk (1)

YAk+1
= YAk

+∆XR sin θk +∆YR cos θk (2)

θk+1 = θk +∆θ (3)

3.2 Task Planner

Task planner calculates the optimal path to reach a goal
point and this is achieved using the Dijkstra algorithm.
This module interacts in a very strong way with the local-
ization, perception and behavior modules. Paths are cal-
culated according with the topological network contained
in the world representation and nodes of this network are
used in the Dijkstra algorithm. Nevertheless, if the percep-
tion module detects an obstacle with which the robot could
crash, the stop-if-risk-of-collision behavior will stop the
robot and a new path will be calculated. Also, paths are
calculated considering the objects stored in the geometric
map of the world representation and the obstacles detected
by the perception module. Thus, path planning is made in
interaction with the perception and world representation
module.

3.3 Behaviors

Head Behaviors Mechatronic head is controlled by two
behaviors mediated by an arbiter as shown in figure 4.
The point-to-nearest-landmark behavior sets the desired
pan θLm and tilt ϕLm according to:

ep = [xLm − xR ylm − yR zLm − zH ]
T
= [ex ey ez]

T
(4)

θLm =Atan2(ey, ex) (5)

ϕLm =Atan2(ez,
√
e2x + e2y) (6)

where [xR yR θR]
T

is the current robot position and ori-
entation, [xLm yLm zLm] is the position of the nearest
landmark to the robot and zH is the height of the head
position, which in Justina is 1.73 [m]. Nearest landmark
is taken from the set of landmarks stored in the world
representation. The point-to-near-obstacle behavior sets
the desired pan θno and tilt ϕno according to:

ep = [xno − xR yno − yR zno − zH ]
T
= [ex ey ez]

T
(7)

θno =Atan2(ey, ex) (8)

ϕno =Atan2(ez,
√

e2x + e2y) (9)

where [xno yno zno] is the position of the nearest object
to the robot from the set of obstacles detected by the
perception module and robot position is the same as
previous. This behavior allow an improvement in the
potential field calculation.

Both behaviors are running concurrently. The arbiter
assign priority to each behavior according to a time-
sharing pattern. In this implementation, time is assigned
50-50 with intervals of three seconds.

Base Behaviors

3.3.2.1. Go-To-Goal-Point Behavior Mobile base is con-
trolled by three behaviors. The first one is the go-to-goal-
point behavior which directs the robot to a desired goal
point. Based on the kinematic model

ẋ=
vl + vr

2
cos θ (10)

ẏ =
vl + vr

2
sin θ (11)

θ̇=
vr − vl

L
(12)

where vl and vr are the linear speeds of left and right
wheels respectively, taken as input signals, and the goal

point Pg = [Xg Yg]
T
, speeds are calculated as

vl = vmaxe
− e2a

α +
D

2
ωmax

(
2

1 + e−
ea
β

− 1

)
(13)

vr = vmaxe
− e2a

α − D

2
ωmax

(
2

1 + e−
ea
β

− 1

)
(14)

with ep = Pg − P = [Xg −X Yg − Y ] = [ex ey] and

ea = Atan2 (ey ex)− θ where P = [X Y θ]
T
is the current

robot position and orientation. vmax, ωmax, α and β are
design constants greater than zero.

3.3.2.2. Avoid-Obstacles Behavior The second behavior
uses potential fields (PF) to avoid obstacles. The equations
used to calculate attractive and rejection forces are those
proposed by Arambula and Padilla (2011):

Fatr(q) = −ξ (q − qatr)
1

|q − qatr|
(15)

Frep(q) =

η

√
1

d
− 1

d0

(
q − qobs

|q − qobs|3

)
if d ≤ d0

0 if d > d0

(16)

with the resultant force Fres = Fatr +Frep, where q is the
robot position, qatr, the goal point and qobs is the position
of the object generating the rejection force. ξ > 0, η > 0
and d0 > 0 are all design constants named, respectively,
attraction constant, rejection constant and distance of
influence. With the resultant force Fres a new goal point
Pg = P + Fres is set and the robot will try to reach this
new goal point with the control law given by (13)-(14).

PFs are calculated from the laser reading and from the
point cloud generated by the Kinect sensor. Kinect data
are processed in parallel using an NVIDA Quadro GPU
and the CUDA toolkit 5.0. The point-to-near-obstacle
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Fig. 5. Behaviors controlling the mobile base

behavior of the head helps to obtain a better view of
the near obstacles. Figure 5 shows a block diagram of the
behaviors controlling the mobile base.

3.3.2.3. Stop-if-Risk-of-Collision Behavior Third be-
havior stops the robot when a risk of collision is detected.
Condition of risk is determined as follows: Let Pno be the
position of the nearest obstacle detected by the perception
module, PR the current robot position and θR the current
robot orientation. If

dc = |ep| < Kdr and

θc =Atan2(epy, epx)− θR < Kθr

with ep = Pno − PR, then there is a risk of collision. With
the correct values ofKdr andKθr it is also possible to avoid
local minima because, when a risk of collision is detected,
a new path is calculated by the task planner.

3.4 Localization

World Representation Environment is represented sym-
bolically through a topological network, a geometric map
and a map of landmarks. Topological network contains a
set of nodes, each of which has a name and a list of nodes
with which is linked. The list of linked nodes is updated
every time a new goal point is set in order to consider
information about obstacles detected by perception mod-
ule. This network is used for global path planning through
Dijsktra algorithm. Path is taken as a global goal and each
node is taken as a local goal which serves as goal point in
the go-to-goal-point behavior.

Geometric map contains a simple representation of the
objects in the environment as rectangles with an associated
position and width-height values. Further, every object has
some ontological information like the object type (table,
chair, desk) and a property indicating whether the object
is good for localization or not. Determining whether an
object is good for localization or not is made statistically.
Good for localization indicates that lines can be easily
extracted. For example, a table or desk are objects that
have well defined lines (borders) while an office chair
does not. In the localization process, this information is
used to determine the best angle toward which the head
should be pointed in order to get the biggest confidence of
landmarks. This process is described in subsection 3.4.2.

Regions are defined similarly to map objects: by an XY
coordinates and width-depth-height values. For example,
a region with a desk and a table in the surroundings
could be good to perform the localization algorithm, while
another one with only chairs and more complex furniture

Observed
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d
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d
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P
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Fig. 6. Matching an observed and a known line

could be harder to extract reliable landmarks. These
regions marked also as “good for localization” are used in
the Kalman filter implementation described in subsection
3.4.2.

In a training stage, a map of landmarks is built. In
this stage, the most reliable landmarks observed by the
perception module are stored. Confidence of a landmark
is determined by the number of times it is observed.
Landmark map stores the coordinates of the end point
of every landmark.

Kalman Filter

3.4.2.1. Position Measurement The Kalman filter is an
estimator of the robot state. To perform estimations its
necessary to “measure” some states of the robot. In this
work, the three states [X Y θ] are considered measurable
since their values can be obtained from the observed
landmarks.

Consider figure 6. Lets call observed lines those given by
the perception module and known lines, those represented
in the landmark map. To triangulate the robot position
each observed line is compared with every known line. To
determine the map line that matches an observed line, lets
define a pseudo-distance between an observed and a known
line DLoLm as the sum of the four distances dp1, dp2, dn1
and dn2 (see figure 6). Considering that a line segment is
defined by its initial and final points and the known line
has an equation of the form ALmx + BLmy + CLm = 0,
the pseudo-distance DLoLm is calculated as

DLoLm = dp1 + dp2 + dn1 + dn2 (17)

with

PfLo = [xfLo yfLo]
T

dp1 = |PfLm − PfLo|
PiLo = [xiLo yiLo]

T
dp2 = |PiLm − PiLo|

PfLm = [xfLm yfLm]
T

dn1 =
|ALmxfLo+BLmyfLo+CLm|√

A2
Lm

+B2
Lm

PiLm = [xiLm yiLm]
T

dn2 = |ALmxiLo+BLmyiLo+CLm|√
A2

Lm
+B2

Lm

An observed line Lo is said to be matched with a known
line Lm if the distance DLoLm between Lo and Lm is less
than the distance between Lo and any other map line.

It its assumed that all objects in the real environment
(tables, walls, desks) are in an quasi-orthogonal position,
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thus, it is expected that every observed line has an an-
gle near to 0◦ or 90◦. An observed line Lo, with equa-
tion ALox + BLoy + CLo = 0, is considered vertical if
|BLo/ALo| < 0.6 and horizontal if |ALo/BLo| < 0.6. If
the observed line is not vertical nor horizontal, then it is
considered as a wrong observation and is not taken into
account. For each pair Lm − Lo (map line, observed line)

a position error epm = [expm eypm eθpm]
T
is calculated. If

Lo is vertical, the following equations are used:

expm = (xfLm − xfLo + xiLm − xiLo) /2 (18)

eypm = 0 (19)

eθpm = π/2− atan2 (ALo,−BLo) (20)

And, if Lo is horizontal:

expm = 0 (21)

eypm = (yfLm − yfLo + yiLm − yiLo) /2 (22)

eθpm =−atan2 (ALo,−BLo) (23)

Finally, an average error eav is obtained from all known-
observed line pairs and PRm = PR + eav = Z is taken as
the measured position.

3.4.2.2. Extended Kalman Filter From (10)-(12) a dis-
crete model can be obtained using an approximation of
the derivatives.

xk+1 = xk +∆t
vl + vr

2
cos θk + ν1 (24)

yk+1 = yk +∆t
vl + vr

2
sin θk + ν2 (25)

θk+1 = θk +∆t
vr − vil

L
+ ν3 (26)

whereX = [x y θ] is the state vector, L the robot diameter,
∆t the sampling step, vl and vr the left and right wheel

speeds respectively and ν = [ν1 ν2 ν3]
T

is gaussian noise
without temporal correlation, zero mean and covariance
matrix Q.

While Justina is moving, it is trying to localize itself,
but it does not search landmarks all the time. It only
performs the position estimation when it is in a “good-
for-localization” (GFL) region (see section 3.4.1). This
helps to reduce the uncertainty in the landmark extraction.
Furthermore, the mechatronic head is always pointing
to the nearest object marked as “good for localization”
(GFL) thanks to the point-to-nearest-landmark behavior.
Then, sometimes the measured position Z (see equation
(3.4.2.1)) is the calculated from the observed lines and
sometimes is the calculated from odometry. That is, the
measured state Z is given by

Z =

{
Xlines if X̂ is in a GFL region

Xodometry otherwise
(27)

The observation model for the Kalman filter, considering
measurement noise, is given by Zk = Xk + ωk where ωk

is gaussian noise without temporal correlation, zero mean
and covariance matrix R. The robot pose estimation by
the Extended Kalman Filter consist of the following steps:

Fig. 7. Biorobotics Lab, where the navigation system was
tested

Prediction: Based on the kinematic model and the obser-
vation model, the next state and the output are predicted
considering that noise is equal to zero both in the transi-
tion state model and the observation model:

X̂(k+1|k) = F̂ (X(k|k), u(k))

Ẑ(k+1|k) = X̂(k+1|k)

P(k+1|k) = J(k)P(k|k)J
T
(k) +Q

where P is the covariance matrix of the estimation error
and J is the Jacobian of the function F w.r.t. X.

Update: Based on the observation error and the estima-
tion error covariance, the next estimated state is calculated
according to:

S(k+1) =H(k+1)P(k|k+1)H
T
(k+1) +R

K(k+1) = P(k+1|k)H
T
(k+1)S

−1
(k+1)

X̂(k+1|k+1) = X̂(k+1|k) +K(k+1)

(
Z(k+1) − Ẑ(k+1|k)

)
P(k+1|k+1) =

(
I − P(k+1)H(k+1)

)
P(k+1|k)

where H is the Jacobian of the observation model, which
in this case is the identity since it is considered that the
whole robot state is measured. Matrix K is known as the
Kalman gain.

In the prediction step, position estimation based on the
kinematic model is not calculated by solving the difference
equations (24)-(26), but taking as predicted position the
value given by the odometry. Actually, odometry is per se
an estimation based on the kinematic model.

In the update state, measurements Z(k+1) are those deter-
mined by landmarks or odometry, depending on whether
the robot is in a good-for-localization region or not.

4. EXPERIMENTAL RESULTS

The proposed navigation system was tested in the Labora-
tory of Biorobotics at the National University of Mexico.
It is an indoor environment with several types of furniture
like tables, desks, chairs, shelves and other kind of objects
like computers, instruments, printers, etc. Figure 7 shows
a panoramic view of the lab.

To make a friendly system, a graphic interface was de-
signed. All the system was implemented in C# language,
except the line extraction from Kinect sensor, which was
implemented in C++. Figure 8 shows the GUI. In the left
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Fig. 8. The navigation system user interface

image, objects of the environment are drawn in green and
yellow. Blue dots are the nodes of the topological network
used for global path planning. Robot is drawn in red. In
the right image, thin orange lines are the known landmarks
and green lines are those extracted by perception module.

Constants used for the control law in the go-to-goal-point
behavior are:

ωmax = 1.5 vmax = 0.6

α = 1.26626 β = 0.3659

The attraction and rejection constants, and distance of
influence used for the avoid-obstacle behavior were, re-
spectively:

ξ = 5.8988 η = 5.9769 d0 = 0.8634

For the line extraction algorithm, constants K1 and K2

were, respectively, 0.05 and 0.06. Finally, constant matri-
ces used in the Kalman Filter were

Q =

[
0.001 0 0
0 0.001 0
0 0 0.001

]

R =

[
0.02 0 0
0 0.02 0
0 0 0.04

]
with a time step ∆t = 0.1 [s].

The navigation system showed a good performance since
the robot could travel along the Biorobotics Lab without
crashing any object and without getting lost. To test the
proposed system, the robot was commanded to navigate
from the lab’s door to the end four times, navigating 40 m
approx. Left side of figure 8 shows in red the path followed
by the robot. During tests, people working in the lab
were the unexpected obstacles and the robot avoided them
successfully. Moreover, this navigation system was tested
in several Robocup@Home tests in the Robocup Mexican
Open, Mexico, and Robocup 2014, Brazil, showing a good
performance in tests of first and second stage.

5. CONCLUSIONS

A navigation system based in a scheme of cooperation was
proposed. In this work, two paradigms of robotics are used:
hierarchical and hybrid. The proposed system has a more
intelligent behavior which is achieved with the interaction
of several levels of abstraction and different hardware mod-
ules. The system was successfully tested along with several
Robocup test. Several previous works showed a good per-
formance of obstacle avoidance, localization, mapping or

path planning, nevertheless, many of them only showed
on of these abilities separately, while this work showed a
reliable complete navigation system tested experimentally.
A position control law was tested and a Extended Kalman
Filter was implemented successfully. While in previous
works odometry is used as the position measurement, in
this proposal a localization system is integrated, based
not only on a common observer but integrating control
and artificial intelligence techniques. It should be noted
that, for all algorithms, experimental results are presented,
implementing modern computational techniques as par-
allel processing, used for calculating the potential field
forces. Future work is, on one side, the integration of
pose estimation based on high-level characteristics of the
environment, to determine, semantically, where the robot
is located and, in the other side, integration of dynamic
models not only of the robot base but also of the arms
and head to achieve a more precise movements.
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González-Sarabia, A. and Alvarado, M. (2012). Nave-
gación de un robot con ruedas en exteriores evadiendo
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