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Abstract: This paper aims to analyze and compare the differents kinds of fuzzy Logic and
Classic Controllers, PI, PD, and PID to level control. Using a real second order didactic plant
with a smooth nonlinearity, so we could evidence, in practice, the real potential of FLC to
nonlinear systems. In situations there is required high performance without forcing the actuator.
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1. INTRODUCTION

The use of computional devices is becoming even more
frequent in the industry nowadays. Whether through mi-
crocontrollers, Programmable Logic Controllers (CLP) or
a computer. In general, on this devices, computational
routines are embedded that make the control a plant or
process.

That control can be subdivided in various kinds, that
includes Classic Control and Intelligent Control (IC). The
last one aims to substitute classic controllers or even a
manual controllers. The area of IC gained prominence in
industry as well as in academics, where we can see a lot of
articles which shows Artificial Intelligence (AI) techniques
for control are replacing some classic controllers in the
industry. As can be seen in the article Zhao and Collins Jr
(2003) which use fuzzy PI to control an industrial Weigh
Belt Feeder.

AI also stands out for provide control of real process which,
sometimes, cannot be well controlled by a classic linear
control. Usually for that kinds of plants, may be too hard
to find a linear equation or a linearized model to make a
good tune of a PID controller. So, the classic techniques of
control may not be the best choice to control this plants.

AI’s field of study include fuzzy logic, Artificial Neu-
ral Network, Genetic Algorithms, hybrids controllers that
combines characteristics of several AI techniques. Among
they, fuzzy logic stands because its allow an excellent rep-
resentation of imprecise human knowledge to a language
that machines can understand and because it is able to
deal with the nonlinearities. The fuzzy logic resulted from
the need to handle imprecise quantities and nonlinear sys-
tem which includes almost all of the known real processes.

The robotics are an area where Fuzzy Logic Con-
trollers(FLC) are widely used, as can be seen on papers of
Huser et al. (1995) and Lilly (2007). The first one uses a
FLC to control the navigation of a robot. The second uses
a controller of the same type to control the navegation of
a vehicle to avoid obstacles.

But, FLC is not restrict to robotics, the use of this kind
of logic can be seen in da Silva (2007). On his article, he
uses a fuzzy to identify torque load in induction engines.
FLC can also be used to control the triggering of a three
phase induction engine, as seen in Bordon (2004).

Another important application to the industry is the
control of level of tanks and reservoirs. In majority of
cases, precision and efficiency are critical to the success
of production. That can be seen in papers that uses FLCs
to control levels, which is characterized as a non-linear
process, see the articles of Chang and Chang (2006) and
Wu and Tan (2004).

So, as the usage of fuzzy grows, this paper was developed
with the propose to analyze and compare three types
of classical controllers and FLC. The selected controllers
were: PI, PD, and PID to perform this comparison.

2. THEORICAL FUNDAMENTATION

2.1 Fuzzy Logic Controllers

The basic idea in fuzzy control is to model the actions
from specialist knowledge, rather than, necessarily, mod-
eling the process itself, according to Gomide and Gudwin
(1994). This knowledge is passed to the fuzzy controller
through its knowledge base, with rules like:

IF <condition> THEN <action>
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A skilled operator can be interviewed to help formulate the
set of fuzzy rules, he will associate input with output, in his
own language. Thus, fuzzy systems can produce estimates
of a system non-linear complex without recourse to mathe-
matical models. In this scope, the fuzzy methodology is an
estimation model input and output free of mathematical
models, see Shaw and Simões (2007). For this reason the
use of FLCs is very interesting in situations in which
the system to be controlled by this strong non-linearities
or when the information on the system are subject to
uncertainties.

The types of FLCs studied in this work are:

2.2 Proportional-Integrate(PI) FLC

The expression for this controller can be saw at (1).

du(t)

dt
= kp ·

de(t)

dt
+ ki · e(t) (1)

Where, du(t) is the variation of the control signal, e(t) is
the error (the difference between the reference signal and
the output of the process), de(t) is the variation in the
error and kp and ki are constants tuned by the designer of
the controller. It is important to note that the output of
this controller must be integrated before it can be used to
control the process, since it is the variation of the control
action.

2.3 Proportional-Derivative(PD) FLC

The expression for this controller can be saw at (2).

u(t) = kp · e(t) + kd ·
de(t)

dt
(2)

Where, u(t) is the control signal, e(t) is the error (the
difference between the reference signal and the output of
the process), de(t) is the variation in the error and kp and
kd are constant tuned by the designer of the controller.

2.4 Proportional-Integrative-Derivative (PID) FLC

The expression for this controller can be saw at (3).

du(t)

dt
= kp ·

de(t)

dt
+ ki · e(t) + kd ·

d2e(t)

dt2
(3)

Where, du(t) is the variation of the control signal, e(t) is
the error (the difference between the reference signal and
the output of the process), de(t) is the variation in the
error d2e(t) is the variation of the error’s variation and
kp, ki and kd are constant tuned by the designer of the
controller.

It is important to note that the output of this controller
should also be integrated before it can be used to control
the process, since it is the variation of the control action.

2.5 Quantitative Measure of Controller Performance

The Performance indices serve to establish the main crite-
ria for evaluating performance for industrial controllers to
make comparisons between different types of controllers,
this quantitative performance comparison is chosen so that

it is placed emphasis on specifications considered impor-
tant system.

There are several performance indices, the most commonly
used are based on the integral of error, a few examples:
Integrated Squared Error(ISE), Integrated Absolute Er-
ror(IAE), Integrated Time Squared Error(ITSE) and In-
tegrated Time absolute Error(ITAE).

There are also indices more complete that take into consid-
erations more parameters such as is the case of Goodhart’s
indices(IG).

For this paper the IAE, ITAE and IG were chosen, as will
be described below, see Dorf and Bishop (2001) Where
the IEA and ITEA equations are obtained from then
discretization of the analytical equation:

Integrated Absolute Error (IAE): Which is giving by the
equation 4.

IAE =
1

N

N∑
k=1

|e(k)| (4)

Integrated Time Absolute Erro (ITAE): Which is giving
by the equation 5.

ITAE =
1

N

N∑
k=1

t|e(k)|. (5)

Goodhart Index (IG): Which is given by the expression
6

IG = α1 · ε1 + α2 · ε2 + α3 · ε3 (6)

Where α1, α2 and α3 are the weights that are given to ε1,
ε2, and ε3, respectively, and are expressed by:

ε1 =
1

N

N∑
k=1

u(k) (7)

ε2 =
1

N

N∑
k=1

(u(k)− ε1)2 (8)

ε3 =
1

N

N∑
k=1

(r(k)− y(k))2 (9)

Where u(k) is the control signal, r(k) is the reference y(k)
is the response, and N is the number of samples.

It can be observed that ε1 is proportional to the control
signal, ε2 depends on the variation of the control signal
and ε3 depends on the mean square error.

3. DESIGN AND CONTROLLERS TESTS

The software was developed to perform the calculation of
the FLC. To develop this program, modularization was
used to facilities the implementation.

In total, three modules were developed to build the whole
software. Every module has a specific function. The first
module is named “Fuzzy Editor” which is responsible by
edit the fuzzy created. The second one is “Supervising
System”, this is the module responsible to send and receive
the data from the plant which is wanted to control.
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The third module is named “Fuzzy Machine” which is
responsible to calculate the values of fuzzy created. It
receives the values from the second module and calculates
the control action which must be taken.

The application has already all the interlock system, so
the user does not have to worry, for example, exceed
their operating limits, ensuring some integrity the plant.
The application also provides the adequacy of inputs and
outputs for each type of FLC.

The software was developed in C++ using Nokia’s inter-
face of programming, Qt Creator, for more information on
the application developed see Martins et al. (2014).

Fig. 1. Comunication Between Supervisory application and
Level

The plant consists of a pump, two tanks coupled vertical
and a reservoir below them. The two tanks contains a hole
in its base which allows the flow of water, the upper tank
receiving water pumped from the reservoir, thus the upper
tank feeds the bottom tank through the hole in the base
and the lower tank closes a cycle with water returning to
the reservoir by its bore.

To this paper, all the FLCs was manual implemented based
in the Sugeno model that uses probabilistics methods
to evaluate the t-norm and t-conorm. The Sugeno fuzzy
technique is used to obtain the fuzzy controller. The fuzzy
PI, PD, and PID controller is developed using the system
error. To the PI and PD have two-term the first is error
and the second is the derivative of the error and to PID
is used another term, the derivative of derivative of the
error. The Sugeno’s output is a linear function.

Based on this, we implemented a FLC to a tank’s level to
differents setpoints. The knowledge base which relates the
input membership functions with Sugeno output fuctions
that can be seen at table 4, to fuzzy-PI, table 5, to fuzzy-
PD, and tables 6, 7 and 8 to fuzzy-PID.

3.1 Classic Controllers

The PID classic controllers was projected to the operation
point of 15(fiveten) cm that is the linearization point, and
also was project to achieve a fast rising point, but 180
seconds is not enough to correct the steady state error.

3.2 Fuzzy Controllers
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Fig. 2. Membership Functions for input error to Fuzzy-PI
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Fig. 3. Membership Functions for input de(t) - Fuzzy-PI
and Fuzzy-PD
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Fig. 4. Membership Functions for input error to Fuzzy-PD
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Fig. 5. Membership Functions for input error to Fuzzy-PID

Table 1. Classic PID Parameters

PI PD PID

Kp 4 3 3

Ki 0.025 0.0028

Kd 0.0025 0.005
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Fig. 6. Membership Functions for input de(t) to Fuzzy-PID
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Fig. 7. Membership Functions for input d2e(t) to Fuzzy-
PID

The membership functions’s parameters are shown at table
2. The functions are not symmetric, because the force of
the gravity, to negative error, helps to faster drain the
water.

Table 2. Membership Functions

M.Fs. PI PD PID

NH [-3000 -12 -8] [-3000 -15 -10] [-3000 -12 -8]
NL [-10 -6 0] [-15 -10 0] [-10 -6 0]

E
rr
o
r Z [-3 2 3] [-1.5 2 4.5] [-3 2 3]

PL [2 6 10] [2 10 15] [2 6 10]
PH [8 15 30000] [10 15 3000] [8 15 30000]

DN [-10000 -0.5 -0.2] [-300 -0.5 0] [-10000 -0.5 -0.2]

d
u
(t
)

d
t DZ [-0.3 0 0.3] [-0.3 0 0.3] [-0.3 0 0.3]

DP [0.2 0.4 10000] [0 0.5 300] [0.2 0.4 10000]

d
2
u
(t
)

d
t2

DDN [-10000 -0.5 -0.2]
DDZ [-0.3 0 0.3]
DDP [0.2 0.4 10000]

Table 3. Sugeno Functions

M.Fs PI PD PID

B [0.015 0.4 0] [1.25 0.0005 0.75] [0.015 0.4 0.000005 0]

S+ [0.018 0.2 0] [0.25 0.0001 0] [0.018 0.2 0.00002 0]

M+ [0.012 0.15 0] [0.75 0.0002 0] [0.012 0.15 0.00001 0]

Z [0.001 0.3 0] [0.001 0.2 0.00001 0]

M- [0.04 0.2 0] [0.038 0.2 0.00001 0]

S- [0.01 0.2 0] [0.01 0.2 0.00002 0]

3.3 Controllers PI

Table 4. FAM to the Fuzzy-PI Controller

Derror/Error NH NL Z PL PH

Negative H M- L+ M+ H

Zero M- L- Z L+ M+

Positive H M- L- M+ H

Table 5. FAM to the Fuzzy-PD controller

Derror/Error NH NL Z PL PH

Negative L M H M L

Zero L M H M L

Positive L M H M L

Table 6. FAM to the Fuzzy-PID controller with
DDerror = N

Derror/Error NH NL Z PL PH

Negative H M- L+ M+ H

Zero M- L- Z L+ M+

Positive H M- L- M+ H

Table 7. FAM to the Fuzzy-PID controller with
DDerror = Z

Derror/Error NH NL Z PL PH

Negative H M- L+ M+ H

Zero M- L- Z L+ M+

Positive H M- L- M+ H

Table 8. FAM to the Fuzzy-PID controller with
DDerror = P

Derror/Error NH NL Z PL PH

Negative H M- L+ M+ H

Zero M- L- Z L+ M+

Positive H M- L- M+ H

3.4 Controllers PID

4. RESULTS

4.1 Controllers PI
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Fig. 8. System Response to Fuzzy-PI Controller
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Fig. 9. Fuzzy-PI controller’s signal

Table 9. Performance indices to PI Controllers

Indices Fuzzy Classic

IAE 10069.4332 6716.9334

ITAE 2753418.496 2102077.6082

IG 2.5706 4.6518

As can be seen in the table the value of IEA of fuzzy
is greater than the PI classic, this happen because the
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Fig. 10. Classic PI system response
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Fig. 11. Classic PI controller’s signal

PI fuzzy controller is softer so that its action is slower
which implies directly in IEA, as can also be observed
in all rise time, where the classic had a better response,
but when the controller classic moves away from the point
of operation, 15cm, has an output unsatisfactory and a
overshoot higher, but the same is not observed in fuzzy,
due to its characteristic of nonlinearity.

When we analyze the IG the fuzzy has a better answer. As
the IG considerates the variation of the control signal as
can be seen in figure 11 the control signal PI classic had
an aggressive behavior, which affected its assessment, nor-
mally a sign thus is unwanted since this type of behavior
reduces the useful life of the actuator. In a general way the
fuzzy had a better performance, even with a IEA higher,
but had a response was desirable for the various setpoints.

4.2 Controllers PD
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Fig. 12. System Response to Fuzzy-PD Controller
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Fig. 13. Fuzzy-PD controller’s signal
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Fig. 14. System Response to Classic PD Controller
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Fig. 15. Classic PD Controller’s signal

Table 10. Performance indices to PD Con-
trollers

Indices Fuzzy Classic

IAE 7745.6878 8050.7655

ITAE 2505851.1635 2695707.2424

IG 3.0803 4.2097

As can be observed in graphics of the levels, the behavior
of the PD fuzzy and the PD classic is very similar, but in
certain setpoints the behavior of the classic is undesirable,
this setpoints are away from the point of operation where
the PD classic loses performance in which the curve of
control signal shows an effort unnecessary of actuator.

To analyze the control signal it is possible to observe that
the PD fuzzy is softer compared to the classic. When
observing the table PD fuzzy has a IEA smaller in relation
to PD classic as well as the ITAE, the happen because the
response of the classic is undesired away from point of
operation and the fuzzy behaves well.

The fuzzy has a good assessment in IG. Note that the
behavior of the fuzzy for setpoint equal to 5 cm has steady
state error, this occurs due to non-linearity of fuzzy. In a
general way the fuzzy obtained the best performance, it is
the Performance Indices and table.

4.3 Controllers PID
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Fig. 16. System Response to Fuzzy-PID Controller
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Fig. 17. Fuzzy-PID controller’s signal
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Fig. 18. Classic PID controller response
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Fig. 19. Classic PID controller’s signal

Table 11. Performance indices to PID Con-
trollers

Indices Fuzzy Classic

IAE 10066.6561 6967.5883

ITAE 2668034.6865 2194671.8211

IG 2.5662 4.1393

Analyzing the table 11 along with the graphics, we can
see that the PID classic controller has a IEA less than
the fuzzy-PID controller, this is due PID classic has more
abrupt changes in the control signal, forcing the pump,
while the fuzzy-PID showed a control signal more damped
than the classic, without abrupt changes in control signal.

It is noticed by the graphics by adding the derivative
action to the controller, we achieved a faster correction of
the error of transitional regime than PI controllers. Note
that the IG to the fuzzy-PID got a better result because
when trying to fix the steady state error faster, the classic
PID controller signal has a aggressive behavior,causing
larges variations int he control signal,switching the pump
what is extremely bad for actuators in order that the
switching voltage can shoten the life of the pump. The
ITEA, dues the fuzzy-PID is slower than classic-PID, the
values to the classic one is better than the fuzzy one.

5. CONCLUSION

Through the results it is possible to observe that the
fuzzy can had a good performance in relation to classic
controllers, but has a greater number of parameters to tune
in relation to the classic. This makes it difficult to obtain,
in a manual way, a tuning that can be considered optimal
with respect to any performance indices, motivating the
use of numerical optimization techniques for automatic
tuning of fuzzy controllers or even hybrid techniques like
neurofuzzy.

The characteristic non-linear the Fuzzy provide a great
capacity to adapt non-linearities of plant which implies
that a good performance in the whole range of operation.
This feature becomes even more-prominent in plants with
non-linearities more accentuated. This cannot be noticed
in classic controllers due to its linear behavior.

Although the plant used in this study is simple and
with smooth non linearities, the results demonstrate the
potential of fuzzy controllers for practical applications.
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