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Abstract: In this paper, a passive fault tolerant control strategy carried out under the concept
of higher order sliding mode control is developed for an internal combustion engine air path.
The proposed fault tolerant strategy incorporates a Super-Twisting algorithm controller which
handles parametric uncertainties and actuator faults. In this paper we consider two types of
actuator faults, additive and loss-of-effectiveness faults. Theoretical results on the convergence
of the proposed controller based on the Lyapunov theory are presented. The simulations of
the proposed controller on a recently validated experimental air path engine model show good
results under actuator faults conditions even in the presence of parametric uncertainties.
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1. INTRODUCTION

Comparing to gasoline engines, diesel engines has the advantage
of producing the requested torque under an optimal compromise
between fuel consumption and given exhaust legislation emission
level. To meet the requirements of emission standards EURO V
and VI, the emissions of internal combustion engines, particularly
Oxides of Nitrogen (NOx) and Particulate Matter (PM) must
be controlled at every engine cycles. Earlier reduction mechanism
suggested that NOx emissions can be reduced by increasing the
intake manifold Exhaust Gas Re-circulation (EGR) fraction, and
smoke can be reduced by increasing the Air/Fuel Ratio (AFR)
(Wahlstrm et al., 2010). The EGR and the AFR rates are controlled
by the EGR and the Variable Geometry Turbine (V GT ) actuators
whose position determine the amount of the EGR flow in the
intake manifold and thus, controls the AFR and the EGR ratios
variables. The V GT and the EGR actuators are strongly coupled so
that conventional calibration/mapping-based approaches, which uses
traditional PI controllers faces difficulty to produce satisfactory and
robust results in terms of torque responses, engine-out emissions at
steady and transient state conditions, even with very time-consuming
and detailed calibrations effort.

In the past decades, considerable research efforts have been dedi-
cated to the control of modern internal combustion engines. Several
controllers were proposed in the literature, e.g., Lyapunov control
design (Jankovic and Kolmanovsky, 2000), robust gain-scheduled
controller based on a Linear Parameter-Varying (LPV) model (Jung
and Glover, 2006; Lihua et al., 2007; Xiukun and del Re, 2007),
Indirect passivation (Larsen et al., 2000), predictive control (Ferreau
et al., 2007) and Feedback linearization (Plianos et al., 2007; Dabo
et al., 2009).

For the purpose of controlling the ICE, the authors in (Jankovic and
Kolmanovsky, 2000) developed a full-7th order ICE model which
describes the dynamics of several variables in the air path of the
engine. To simplify the control design the seventh-order model is
reduced to a third-order model which describes the dynamic of

the power of compressor and the pressures in the intake and the
exhaust manifold. This simplification leads to the appearance of
discrepancies between the description model and the real system due
to the neglected dynamics, the model parametric uncertainties and
the potential faults which can occur in the ICE air path.

In this paper, we deal with both model parametric uncertainties and
engine actuator faults. In the ICE air path, model parametric un-
certainties arise from variations in the engine cartographies, sources
such as temperature change, and external or internal unmodelled
disturbances. Engine actuator faults affect the ICE air path actu-
ators. In this paper, we consider two types of actuator faults. The
first one, model the faults as bounded additive periodic unknown
signals that are superposed onto the control signal. The second one,
consider the case of the loss of actuator effectiveness, modelled by a
multiplicative factor that, when multiplied to the control signal, will
reduce its effectiveness depending on the value of this factor.

Sliding Mode Control (SMC) which is known to perform well under
parametric uncertainties and external disturbances (Utkin, 1977;
Pisano and Usai, 2011) has become widespread and one of the
most popular robust non-linear control method. In (Utkin et al.,
2000; Upadhyay et al., 2002), the authors proposed a sliding mode
based controllers which coordinates the EGR and the V GT actuator
signals for the control of modern internal combustion engines. SMC
Hybrid air path controllers for multiples combustion modes were also
proposed in (Wang, 2008).

The main disadvantage of classic sliding mode control is the phe-
nomenon of chattering which is characterized by the high frequency
oscillations at the output of the system. In (Levant, 1993) the Higher
Order Sliding-Mode control (HOSMC) was used in order to reduce or
to eliminate the chattering phenomenon at high frequencies. Several
algorithms to carry out HOSMC have been developed in the liter-
ature (see (Pisano and Usai, 2011) for a complete review). Among
them, the Super-Twisting control algorithms (STA) require that the
sliding variable be relative degree 1 with no need of the derivative
of the sliding surface S. With its simplicity of implementation and
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its power to eliminate the chattering phenomenon, STA algorithms
are preferable over the classic sliding mode (Pisano and Usai, 2011),
(Levant, 1993), (Gonzalez et al., 2011).

Comparing to the works in (Utkin et al., 2000; Upadhyay et al., 2002;
Wang, 2008) the contribution of this paper consists in:

• Developing a passive STA controller centred on achieving fault
tolerance for the ICE air path. The proposed controller is
characterized by the simplicity of its structure. The controller
handles both parametric uncertainties and actuator faults. Two
types of actuator faults are treated simultaneously in this
paper, additive actuator faults and loss-of-effectiveness. This
is in our acknowledge the first time that those faults types are
considered in the design of a ICE air path controller.

• The convergence of the proposed controller under the consid-
ered faults have been proved using strong Lyapunov function.
Sufficient conditions on the controller gains had been derived
providing robustness property, fault tolerance, and finite time
convergence for the proposed controller.

This paper is organized as follows. Section II introduces the ICE
air path modelling. Section III introduces the systems that we are
dealing with, together with the assumptions required. The passive
fault-tolerant STA based controller will be described in section IV
. Simulation results are given in section V. Section VI summarizes
conclusions and describes the future work.

2. CONSIDERED ICE AIR PATH MODEL

The schematic diagram of the ICE is shown in Fig. 1. At the top
of the diagram we can see the turbocharger and the compressor
mounted on the same shaft. The turbine delivers power to the
compressor by transferring the energy from the exhaust gas to the
intake manifold. Together, the mixture of air from the compressor
and the exhaust gas from the EGR valve with the injected fuel burns,
and produces the torque on the crank shaft.

Fig. 1. Internal Combustion Engine

The full-order ICE model is a seventh-order one which contains seven
states: intake and exhaust manifold pressure (p1 and p2), oxygen
mass fractions in the intake and exhaust manifolds (F1 and F2),
turbocharger speed (ωtc) and the two states describing the actuator
dynamics for the two control signals (u1 and u2).

In order to obtain a simple control law, and due to the fact that
the oxygen mass fraction variables are difficult to measure, the
seventh-order model is reduced to a third-order one (Jankovic and
Kolmanovsky, 2000).

ṗ1 = k1(Wc +Wegr − kep1) +
Ṫ1

T1
p1

ṗ2 = k2(kep1 −Wegr −Wt +Wf ) +
Ṫ2

T2
p2

Ṗc =
1

τ
(ηmPt − Pc)

(1)

where the compressor and the turbine mass flow rate (Wc and Wt)
are related to the compressor and the turbine power (Pc and Pt) as
follows:

Wc = Pc
kc

pµ1 − 1
(2)

and:

Pt = kt(1− p−µ2 )Wt (3)

Where:
kc = ηc

cpTa
, kt = cpηtT2, k1 = RaT1

V1
, ke =

ηvNVd
RaT1

k2 = RaT2
V2

Notice that the real inputs are the EGR and the V GT actuator
openings. The considered inputs, in this case for the sake of simplic-
ity, are u1 = Wegr and u2 = Wt, which are respectively the air flow
through the EGR and the V GT actuators.

Since Ṫ1 and Ṫ2 have very slow variations (Jankovic and Kol-
manovsky, 2000), their dynamic can be neglected. This yields the
following simplified model:

ṗ1 = k1(Wc +Wegr − kep1)

ṗ2 = k2(kep1 +Wf −Wegr −Wt)

Ṗc =
1

τ
(ηmPt − Pc)

(4)

When replacing Wc and Pt by their expressions in (2) and (3), the
simplified model can be expressed under the following control-affine
form:

ẋ = f(x) + g1(x)u1 + g2(x)u2 (5)

where x = (p1, p2, Pc)T and

f(x) =


k1kc

Pc
p
µ
1
−1
− k1kep1

k2(kep1 +Wf )

−Pc
τ

 (6)

g1(x) =


k1

−k2

0

 g2(x) =


0

−k2

Ko(1− p−µ2 )

 (7)

with Ko = ηm
τ
kt

We notice that the ICE model parameters (k1, k2, kc, ke, kt ,τ
,ηm) have been identified under steady state conditions (i.e constant
engine speed and constant fuelling rate) and extensive mapping. The
nomenclature of the ICE parameters can be found in (Jankovic and
Kolmanovsky, 2000).

3. SYSTEM FAULT DESCRIPTION

Here, we consider the class of non-linear system of the form:

ẋ = f(x) + g(x)u (8)

Where x ∈ Rn,u ∈ Rm represent the state and the input vector
respectively. The vector fields f and columns g are supposed to
satisfy the classical smoothness assumptions with f(0) = 0. Adding
to the previous classical assumptions, we assume that system (8) is
affected by the following types of actuator faults.

Assumption 1. In this paper we assume two types actuator faults.

• An additive actuator fault enters the system in such a way that the
faulty model can be written:

ẋ = f(x) + g(x)(u+ F (x, t)) (9)

where F (x, t) is bounded by an unknown positive constant Dm i.e

‖F (x, t)‖ < Dm. (10)
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• The actuator loss-of-effectiveness is represented by a multiplicative
matrix α which affects the performance of each actuator in such a
way that:

ẋ = f(x) + g(x)αu (11)

Where α ∈ Rm×m is a diagonal continuous time varying matrix
whose diagonal elements αii, i = 1, ....,m.

Assumption 2. We assume that the nominal system (8) is locally
reachable (in the sense of (Vidyasagar, 1993) , pp. 400, Definition 5)

Combining (9) and (11) the global faulty model of nominal system
(8) can be written as follows:

ẋ = f(x) + g(x)(αu+ F (x, t)) (12)

4. FAULT-TOLERANT SUPER TWISTING CONTROLLER
DESIGN FOR THE ICE AIR PATH

The proposed air path control strategy operates under the conven-
tional combustion mode conditions (Wang, 2008). In this work the
author suggested that for an optimal control performance, compres-
sor mass flow Wc and Exhaust pressure manifold p2 are suitable
choice for key output variable to be controlled. By a suitable change
of coordinates, the authors in (Ahmed Ali et al., 2012) proposed
to replace the compressor mass flow set-point (Wcd) into an intake
manifold pressure set-point (p1d). This transformation simplifies the
control structure by defining new vector set-point(p1d, p2d). The goal
now, is to find a closed-loop controls which tracks these two variables.

Let us now consider system (1-7) and define the following two sliding
surfaces S1, S2 

S1 = p1 − p1d

S2 = p2 − p2d
(13)

The time derivative of S1, S2 along the trajectories of system (5-7)
leads to : 

Ṡ1 = k1Wc + k1u1 − k1kep1 − ṗ1d

Ṡ2 = k2kep1 + k2Wf − k2u1 − k2u2 − ṗ2d

(14)

Now assume that the actuator faults described in (9) and (11) affect
the VGT and the EGR actuators. Following (12), the faulty ICE air
path model is rewritten as follows:

Ṡ1 = k1Wc + k1α1u1 − k1kep1 + k1F1 − ṗ1d

Ṡ2 = k2kep1 + k2Wf − k2α1u1 − k2α2u2 − k2(F1 + F2)− ṗ2d
(15)

Here (α1, α2), characterize the amount of the loss-of-effectiveness
model which affects the EGR and the VGT actuators. (F1, F2)
characterize the additive faults which modifies the air flows through
the EGR and the VGT actuators.

Remarks 1. The actuator loss-of-effectiveness α1,2 in (15) charac-
terize the actuator capability to achieve the control requirements.
For example if αi = 1, we have a healthy actuator, if αi < 1, the
actuator is working partially.

The control design will be achieved under the following assumptions.

Assumption 3. All the states of system (15) are available for mea-
surements at every instant.

Assumption 4. To guarantee the local reachability of system (15),
the additive faults F1, F2 are uniquely time-dependent and (α1,2 6=
0) i.e 0 < ε ≤ αii ≤ 1

Consider now the faulty system (15) with the sliding manifold
S = [S1, S2]T . It is clear that the relative degree of S with respect to
control inputs u = [u1, u2]T is equal to 1. The dynamics of S takes
the following form:

Ṡ = A(X,F, P1, Xd) +B(α, P2)u (16)

Where X = [p1, p2,Wc]T , F = [F1, F2]T , P1 = [k1, k2, ke], Xd =
[p1d, p2d]T , α = [α1, α2]T , P2 = [k1, k2]T and

A =

(
k1Wc − k1kep1 + k1F1 − ṗ1d

k2kep1 + k2Wf − k2(F1 + F2)− ṗ2d

)
B =

(
α1k1 0
−α1k2 −α2k2

)
Introducing the variables x1 = S1, x3 = S2, system (16) is rewritten
under the form:

ẋ1 = k1α1u1 + ξ1(X,F, P1, Xd)

ẋ3 = −k2α2u2 + ξ2(X,F, P1, Xd, u1)

(17)

Where:ξ1(X,F, P1, Xd) = k1Wc − k1kep1 + k1F1 − ṗ1d and ξ2 =
k2kep1 + k2Wf − k2(F1 + F2)− ṗ2d − k2α1u1.

Assumption 5. The terms ξ1 and ξ2 are Lebesgue-measurable and
uniformly bounded in any compact region of the state space x1, x3
by δ1, δ2 so that:

|ξ1| < δ1|x1|
1
2 , |ξ2| < δ2|x3|

1
2

The task now is to design for system (17) a super-twisting controller
which guarantee finite time convergence of the two sliding manifolds
S1, S2. Following (Fridman and Levant, 2002) the proposed STA
controller for system (17) takes the following form:

u1 = x2 − λ1|x1|1/2sign(x1)

ẋ2 = −λ2sign(x1)

u2 = −x4 + λ3|x3|1/2sign(x3)

ẋ4 = −λ4sign(x3)

(18)

Where λi, λi+1, (i = 1, 3) satisfies the following conditions:
λi > 2δj

2εjλi+1(λi− 2δj) ≥ λi(2(1− εj)
λi+1

λi
+
δj

2
)2 (j = 1, 2)

εj = kjαj

(19)

For (i, j) = (1, 1) and (i, j) = (3, 2)

Theorem 1. Consider the uncertain faulty system (15). The passive
fault tolerant STA controller (18) under conditions (19) ensure that
the sliding manifolds [S1, S2] converges to zero in a finite time t(xi0)

smaller than T =
2V (xi0)

1
2

ν
, where V is the Lyapunov function

defined in (21),ν is a constant depending on the gains λi, λi+1, εj
and δj .

Proof. The proof of this theorem will be inspired from the Lyapunov
function defined by the authors in (Moreno and Osorio, 2008). Ap-
plying the control law (18) in (17) leads to the following differential
inclusions which are understood in the Filippov sense (Filippov,
1988):


ẋ1 = −k1α1λ1|x1|1/2sign(x1) + k1α1x2 + ξ1(X,F, P1, Xd)

ẋ2 = −λ2sign(x1)

ẋ3 = −k2α2λ3|x3|1/2sign(x3) + k2α2x4 + ξ2(X,F, P1, Xd, u1)

ẋ4 = −λ4sign(x3)
(20)

Let us now consider for each subsystems (x1, x2) and (x3, x4) the
following Lyapunov function (Moreno and Osorio, 2008):

Vi = XT
i PiXi (i = 1, 3) (21)

where:

XT
i = [|xi|

1
2 sign(xi), xi+1] (22)

and:

Pi =
1

2

(
4λi+1 + λ2i −λi
−λi 2

)
(23)
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We notice that Vi is continuous but not differentiable at xi = 0.
Moreover, it is positive and radially unbounded for λi+1 > 0.
Differentiating Vi with respect to time yields to:

V̇i = ẊT
i PXi +XT

i PẊi (24)

Taking the time derivative of (22) along the trajectories of (20), we
derive:

Ẋi =
1

|xi|
1
2

(AiX +BTj ) (25)

Where:

Ai =

(
−εjλi

2

εj
2

−λi+1 0

)
(26)

and

Bj = (
ξj

2
, 0) (27)

Combining (24-27) yields:

V̇i = −
1

|xi|
1
2

XT
i QiXi +

1

|xi|
1
2

ξjq
T
i Xi (28)

where:

Qi =

(
εjλi(4λi+1+λ

2
i )

2
− λiλi+1 ?

2λi+1(1−εj)−εjλ2
i

2

εjλi
2

)
(29)

and

qTi = [2λi+1 +
λ2i
2
,−

λi

2
] (30)

Taking into account the perturbation bounds in assumption 5 then :

1

|xi|
1
2

ξjq
T
i Xi ≤

1

|xi|
1
2

δjX
T
i ∆iXi (31)

Where:

∆i =

(
2λi+1 +

λ2
i
2
−λi

4

−λi
4

0

)
(32)

The derivative of the Lyapunov function can be rewritten as follows:

V̇i = −
1

|xi|
1
2

XT
i

∼
QiXi (33)

Where:

∼
Qi =

λi

2

(
4εjλi+1 + εjλ

2
i − 2λi+1 − (4

λi+1

λi
+ λi)δj ?

2(1− εj)
λi+1

λi
− εjλi +

δj
2

εj

)
(34)

V̇i is negative if
∼
Qi > 0, and it is easy to see that this is the case if

the gains are as in (19). Since Vi is positive and radially unbounded,
it satisfies the following well-known property:

Πmin(Pi) ‖ Xi ‖2≤ Vi ≤ Πmax(Pi) ‖ Xi ‖2 (35)

Where ‖ Xi ‖2= |xi|+ x2i+1 denotes the Euclidean norm of Xi, and
Πmin(Pi),Πmax(Pi) are the minimum and maximum eigenvalues of
the matrix Pi. From (33) we derive:

V̇i ≤ −
1

|xi|
1
2

Πmin(
∼
Qi) ‖ Xi ‖2 (36)

After a simple computation (see (Moreno and Osorio, 2008)), we
have:

V̇i ≤ −νV
1
2
i (37)

Where

ν =
Π

1
2
min(Pi)Πmin(

∼
Qi)

Πmax(Pi)

Integrating (37) yields that xi converges toward zero in finite time

at most after T =
2V (xi0)

1
2

ν
, this complete the proof.

5. SIMULATION AND EVALUATION

In this section, we report numerical results obtained from the simu-
lation of controller (18) on the reduced third order model developed
in (1-7). Numerical simulations were performed in real-time Soft-
ware In the Loop (SIL) using the dSpace modular simulator. This
real-time platform is based on the DS-1006 board interfaced with
Matlab/Simulink software. The engine used is a common rail direct-
injection in-line-4-cylinder provided by a French manufacturer. Nu-
merical values of (ηt,ηc,ηv ,ηm) cartographies in the ICE model
were provided by the manufacturer. The model parameters nominal
values ko1, ko2, koc, koe, kot, τo, ηom and µo are usually identified
around some given operating points. In these simulations, the pa-
rameters of the model (1-7) were taken from (Larsen et al., 2000)
i.e (ko1=143.91, ko2=1715.5, koc=0.0025, koe=0.028, kot=391.365,
τo=0.15, ηom=0.95, µo=0.285). To avoid the chattering associated
with sliding motion, a well-known continuous approximation of the
function sign(S) is given by:

Sign(S) =
s

|s|+ ξ
(38)

This approximation is used to ensure that the sliding motion will
be in the vicinity of the line (S = 0). In this simulation the
approximation of the sign function has been implemented with
ξ = 0.01. Moreover the sampling step time for all the simulations
is the same, 10−4s. To demonstrate the efficiency of our proposed
controller, a comparison is performed between the STA controller and
the Adaptive Integral Sliding Mode Controller (AISMC) proposed
by the authors in (Guermouche et al., 2013). In this work the
authors demonstrated that AISMC controller with an adaptation
gain mechanism, ensures that the sliding manifolds [S1, S2] converges
asymptotically toward zero.

For the AISMC controller, γ1, γ2, governs the dynamic of the
discontinuous adaptive control gains, while ρ1, ρ2 characterize the
level of the integral action wanted by the user for a given control
requirements. Comparing to the work of the authors in (Guermouche
et al., 2013), the advantages of the proposed STA controller are :

• The convergence of the STA controller is finite time while the
AISMC one is asymptotic.

• The STA control structure is less consuming in terms of com-
putational complexity comparing to the AISMC one.

In this simulation, we assume certain uncertainties on the set of the
ICE model parameters P=(k1 , k2 , kc , ke , kt , τ , ηm , µ). To make
it simple, additive uncertainties are considered in this simulation,
i.e for a nominal value Poi(1 ≤ i ≤ 8), the considered Pi in the
simulation takes the following form:

Pi ⊂ P, Pi = Poi + δPoi

Where δPoi represent the maximum value of the uncertainty on the
considered model parameter.
The performances of the AISMC and the STA controllers are com-
pared when both additive time varying faults and loss-of effectiveness
actuators faults affects the EGR and the VGT actuators. The goal
here was to evaluate the performance of each controller in terms
of tracking error and chattering effects. These performances are
summarised in Table 2. where an RMS (Root Mean Square) value,
quantifies for each case, the Control Effort (CE) of the EGR and the
V GT actuator and the Tracking Error (TE) of the controlled output
Wc and p2. Finally the simulations were conducted under the control
requirements defined in Table 1.:

Table 1. Control requirements for the AISMC
and the STA controllers

variable Setpoint1 Setpoint 2

Wcd (Kg/s) 0.03 0.05

P2d (Bar) 1.45 1.75

Wf (Kg/h) 3 7
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5.1 Case 1: Additive leakage time varying faults and multiplicative
loss-of-effectiveness time varying faults in EGR and VGT actuators
with 20% parametric uncertainties

In this case, we evaluate the performance of the AISMC and the
STA controllers by considering both of additive and multiplicative
time varying faults (leakage and loss-of-effectiveness) added to 20%
parametric uncertainties. We consider a fault scenario where:

• At t=25 s, the additive leakage time varying fault F (t) witch
affect the VGT and the EGR actuators, takes the following
form:

F (t) =

{
0× (1, 1)T if t < 25s

− 0.05 + 0.02 sin(0.2πt)× (1, 1)T if t ≥ 25s

• At t=55 s, the multiplicative loss-of-effectiveness time varying
fault occurs in the EGR and the VGT actuators following this
model:

α(t) =

{
I2×2 if t < 55s

0.2 + 0.05 sin(0.2πt)× I2×2 if t ≥ 55s

In this simulation, the gains of controllers were kept in the same
manner as in the case 1, λ1, λ2, λ3, λ4=[0.3, 0.3, 0.3, 0.3] and γ1,
γ1, ρ1, ρ2=[1, 50, 300, 300].
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Fig. 2. Wc and p2 tracking performance for the STA
and the AISMC with additive time varying fault and
actuators loss-of-effectiveness and 20 % parametric
uncertainties

Fig. 2. shows the performances of the STA and the AISMC controllers
when both time varying additive and loss-of-effectiveness actuators
faults occurs in the ICE. We can observe that the two controllers
exhibits an oscillatory behaviour starting from t=25s with a sig-
nificant magnitude and high frequency, specially for the AISMC.
After t=55s, we also observe a random behaviour with some peaks
of divergence that the controllers try to reduce but still unable to
completely eliminate. This is confirmed looking to Table 2. where
the RMS of TE is increased.
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Fig. 3. Control inputs UEGR and UV GT for the STA
and the AISMC additive time varying fault and
actuators loss-of-effectiveness and 20 % parametric
uncertainties

The Control efforts for both controllers have increased in this case.
Indeed, in Fig. 3. we can see that both of te STA and AISMC
controllers tried to compensate the leakage at t=25s and the loss-
of-effectiveness at t=55s.

5.2 Case 2: Additive leakage time varying faults and multiplicative
loss-of-effectiveness time varying faults in EGR and VGT actuators
with 20% parametric uncertainties with increased gains

To remedy the problems of robustness and fault tolerance found in
case 1, we increase the controllers gains. So we consider the same
fault scenario in case 1 but with changing the STA gains to λ1, λ2,
λ3, λ4=[3, 3, 3, 3] and the AISMC gains to γ1, γ1, ρ1, ρ2=[50, 950,
4500, 8500].

We can see from Fig. 4. that performances of the STA controller
have been considerably improved. The leakage (additive time varying
faults) and the actuator loss-of-effectiveness (multiplicative time
varying faults) are completely rejected from the states trajectories
by the STA controller. For the AISMC controller, we can see that
the magnitude of oscillations observed in case 1 is reduced thanks to
the integral action and control gains but still not enough to reach the
same level of performances comparing to the STA controller. Indeed,
the RMS of TE Wc and p2 for the STA controller are smaller than
the AISMC one (Table 2.).

We note from Fig. 5. that the oscillatory behaviour of controls efforts
(Uegr, Uvgt) has been considerably reduced. For the AISMC, this is
due to the increase of integral action and for the STA, its due to the
well known properties of reduction of chattering effect.

6. CONCLUSIONS AND FUTURE WORK

In this paper, a fault-tolerant STA controller is designed for con-
trolling the ICE air path. Numerical simulations shows that the
proposed controller is fault-tolerant for the different types of actuator
faults considered in this paper. Comparing to the AISMC controller

Table 2. RMS of Tracking Error (TE) and Control Effort (CE)

Control Algorithm RMS of CE EGR RMS of CE VGT RMS of TE (Wc) RMS of TE (P2)

Case 1
STA 0.0288 0.1283 3.4470e-004 0.0117
AISMC 0.0294 0.1329 0.0013 0.0126

Case 2
STA 0.0386 0.1316 1.3252e-004 5.3214e-004
AISMC 0.0462 0.1347 2.1594e-004 0.0054
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Fig. 4. Wc and p2 tracking performance for the STA
and the AISMC with additive time varying fault and
actuators loss-of-effectiveness and 20 % parametric
uncertainties with increased gains
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Fig. 5. Control inputs UEGR and UV GT for the STA
and the AISMC additive time varying fault and
actuators loss-of-effectiveness and 20 % parametric
uncertainties with increased gains

the STA controller is characterized by the simplicity of its control
structure. Indeed, the AISMC controller is based upon the tuning of
4 control parameters. It turns out from the simulation results that
improving the performance of the AISMC controller needs always
a compromise between those 4 parameters. For the STA controller
the control parameters have been easily modified in the simulation
and the tracking performances were clearly better than the AISMC
ones. In our future works we intend to improve the performance
of the proposed STA controller by designing an adaptive super
twisting version of this algorithm. As it was the case for the AISMC,
the control gains will be automatically tuned without knowing the
bounds of the uncertainties and the failures affecting this controller.
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