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Abstract: This work considers the stabilization problem of third-order unstable linear systems
with time-delay, specifically with one unstable pole and a couple of complex conjugate poles.
Necessary and sufficient conditions are stated to guarantee the stability of the closed-loop
delayed system by a PD controller. Finally, the performance of the proposed control strategy
is evaluated by numerical simulation in the application to an academic example.

Keywords: Time-delay, unstable system, complex conjugate poles, PD control.

1. INTRODUCTION

Control systems with time-delay play an important role
in the modeling of real-life phenomena, for example, they
are used for the analysis of energy or mass transport.
Time delays can also appear due to the time associated
with the transmission of information to remote locations
and in digital control systems due to the time involved in
computing control signals, data acquisition, etc. Niculescu
(2001). In general, control system performance is very
sensitive to all these delays. In fact, a closed-loop control
system may become unstable as a consequence of delays
Zhong (2006).

The effect of time delay can be compensated by removing
the exponential term from the characteristic equation of
the process as introduced by Smith (1957). This tech-
nique consists in counteracting the time delay effects by
predicting the effects of current inputs by the analysis
of future outputs. The main limitation of the original
Smith Predictor (SP) is the fact that the prediction scheme
lacks of a stabilization step. This limitation restricts the
usefulness of the Smith Predictor just to open-loop stable
plants. To solve this problem, some modifications of the
SP original structure have been proposed. For example, in
Rao and Chidambaram (2006) it is presented an efficient
modification of the Smith predictor in order to control
unstable first order system with time delay by using the
direct synthesis method. Moreover, in Normey-Rico and
Camacho (2009) it is proposed a modification to the origi-
nal Smith structure to deal with unstable first and second
order delayed systems.
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On the other hand, some recent works have been fo-
cused to the stability analysis of time-delay systems. Most
of those approaches are based on Lyapunov-Krasovskii
and Lyapunov-Razumikhin. These results are expressed in
terms of algebraic Riccati equations Zhong (2006), linear
matrix inequalities Fridman and Shaked (2002); Lee et al.
(2004), etc. In Michiels et al. (2002), the control of time
delay is tackled using a numerical method to shift the
unstable eigenvalues to the left half plane by static state
feedback, applying small changes to the feedback gain.

Another solution in order to deal with the time-delay sys-
tems is to use Proportional-Integral (PI) and Proportional-
Integral-Derivative (PID) controllers. PID controller is
widely used in the control of industrial processes due to
its simple structure and control stability in many practical
processes Silva et al. (2005). Recent works inspired on
PID controller have yielded the characterization of gains
to stabilize time-delay systems. For instance, in Silva et al.
(2002) they have been solved the stabilization of first-order
systems with time-delay using a version of Hermite-Biehler
Theorem derived by Pontryagin (1995) applicable to quasi-
polynomial. Moreover, the method used in Silva et al.
(2002) was generalized to the second-order integrating
processes with time-delay Ou et al. (2006). For a first-
order unstable system with time-delay, the D-partition
technique was applied to characterize the stability domain
in the space of system and controller parameters as shown
in Hwang and J.Hwang (2004).

Otherwise, using the Nyquist stability criterion, in Muro
et al. (2009) and Lee et al. (2010), they are presented the
conditions to stabilize linear systems with one unstable
pole, n stable poles and time delay. However in Muro et al.

Memorias del XVI Congreso Latinoamericano
de Control Automático, CLCA 2014
Octubre 14-17, 2014. Cancún, Quintana Roo, México

1166



(2009) the problem is solved by static output feedback,
while in Lee et al. (2010) the result is extended to the use
PID control.

In order to generalize this class of systems is interesting
to consider not only the existence of real poles, but
also the possible existence of complex conjugate poles.
On this approach, in Hernandez et al. (2013) a forward
step is given, where is consider the stabilization of a
system with an unstable pole and one pair of complex
conjugate poles by static output feedback. In same topic,
the proposal of this work is present the necessary and
sufficient conditions to ensure the stability of the closed-
loop third-order delayed system with one unstable pole,
and a couple of possible complex conjugate poles. The
problem is solved using PD controller. It is important
to note that the PD control provides a less restrictive
condition than the simple P Control, for that reason in
some cases is better apply a PD controller. Moreover, the
necessary and sufficient condition in terms of the maximal
delay admissible for the stabilizability is established and
the range of the stabilizing control parameters (kp, kd) is
also derived. Finally, in order to evaluate the proposed
strategy, the PD controller are applied to an academic
example to give an idea of the performance of the control
strategy.

The rest of the paper is organized as follows. Section 2
presents the problem statement. The Section 3 presents
the proposed control strategy, establishing the necessary
and sufficient conditions to stabilize the system by a PD
controller. Section 4 is devoted to presenting an academic
example. Finally, Section 5 presents some conclusions.

2. PROBLEM STATEMENT

Consider the class of single–input single–output (SISO)
linear time invariant (LTI) systems with time–delay in the
input–output path given by

Y (s)

U(s)
= G(s)e−τs (1)

where U(s) is the input signal, Y (s) is the output signal,
τ > 0 is a constant time–delay and G(s) is the delay-free
transfer function of the system given in the form

G(s) =
α

(s− a)(s2 + 2ζωns+ ωn2)
(2)

that consist of one unstable pole, this is a > 0, and a couple
of real poles. In particular, assuming ζ as the damping
relation and ωn as the undamped natural frequency, it is
clear that when 0 < ζ < 1 the second order subsystems
will produce a couple of complex conjugate poles.

This work proposes the stability analysis of the class
of time–delay systems (1)-(2) in closed–loop with the
following control action:

• PD controller: Cpd(s) = kp (1 + kds)

Notice that for the previous controller, the obtained
closed–loop system will have the general form

Y (s)

R(s)
=

Cpd(s)G(s)e−τs

1 + Cpd(s)G(s)e−τs
(3)

where G(s) is given by (2). It is clear that the exponential
term e−τs located at the denominator of the transfer
function (3), leads to a system with an infinite number of
poles and where the closed–loop stability properties must
be carefully stated.

The objective of this work is to present necessary and suf-
ficient conditions for the stabilization of the class systems
given by (1)-(2) in closed–loop with PD control action.
Moreover, it is intended to characterize all possible values
for the parameters kp and kd suc that the closed–loop
system is asymptotically stable.

3. PRELIMINARY RESULTS

This section presents a preliminary result that will be
useful in order to obtain the main result of this work.
Consider the following unstable third-order system with
time–delay

Y (s)

U(s)
=

α

(s− a)(s2 + 2ζωns+ ω2
n)
e−τs (4)

and the proportional output feedback

U(s) = R(s)− kY (s) (5)

where R(s) is a new input signal and gain k > 0.

Lemma 1. Consider the unstable third-order input de-
layed system (4) and the output feedback (5). Then there
exist k > 0 that stabilize the closed–loop system

Y (s)

R(s)
=

αe−τs

(s− a)(s2 + 2ζωns+ ω2
n) + kαe−τs

(6)

if and only if

τ <
1

a
− 2ζ

ωn
.

This result can be demonstrated with an analysis in the
frequency domain. The proof of this result can be viewed in
Hernandez et al. (2013). Based on the well-known Nyquist
stability criteria, in what follows it is presented the proof of
Lemma 1 following a procedure that will be fundamental
latter on the proof of the main results of the work.

Proof. [Proof of Lemma 1] Suppose that τ < 1
a −

2ζ
ωn

is fulfilled. From the Nyquist stability criteria in
order to have a stable system it is required to have a
counterclockwise rotation to the point (−1, 0). The open
loop transfer function takes the form

Y (s)

U(s)
= Q(s) =

α

(s− a)(s2 + 2ζωns+ ω2
n)
e−τs

from where it is possible to obtain its phase expression
∠Q(jω) in the frequency domain ω as

∠Q(jω) = −
(
π − arctan

ω

a

)
− ωτ − arctan

(
2ζ
(
ω
ωn

)
1 −
(
ω
ωn

)2
)
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Notice first that the magnitud expression MQ(jω) =
‖Q(jω)‖ is an strictly decreasing function of ω.

Since ∠Q(jω) has an initial phase angle of −π, then there
exists an adequate k > 0 such that the Nyquist diagram
will start on the left of the point (−1, 0). In order to get the
required rotation to the point (−1, 0) the function ∠Q(jω)
should be increasing around ω = 0, this is ∠Qp(jω) > −π
for ω ≈ 0, since

d

dω
(∠Q(jω))

∣∣∣
ω=0

=

[
a

ω2 + a2
−

2ζωn(ω
2 + ω2

n)

ω4 + 2ω2
nω

2 (2ζ2 − 1) + ω4
n

− τ

]
ω=0

d

dω
(∠Q(jω))

∣∣∣
ω=0

=
1

a
−

2ζ

ωn
− τ > 0

producing the desired condition

τ <
1

a
− 2ζ

ωn
.

4. MAIN RESULTS

This Section presents necessary and sufficient conditions
to stabilize the class of third-order linear input delayed
system of the form (1)-(2) by means of PD controller.

Notice from (3) that the control strategy proposed in this
work produces a direct open–loop transfer function which
can be expressed in the form Q(s)

Qpd(s) = Cpd(s)G(s)e−τs (7)

for G(s) given by (2).

Theorem 1. Consider the class of third-order delayed sys-
tems with one unstable pole given by (1)-(2) and possible
including complex conjugate poles. There exists a PD
controller such that the corresponding closed–loop system
is stable if and only if

τ <
1

a
+

√
1

a2
+

2 (2ζ2 − 1)

ω2
n

− 2ζ

ωn
.

Proof. From the Nyquist stability criteria the system is
stable iff N + P = 0, being P the number of poles in the
right half plane “s” and N the number of rotations to the
−1 point clockwise in the Nyquist diagram. In this case, as
P = 1, from the Nyquist stability criteria, in order to have
a stable system it is required to have a counterclockwise
rotation to the point (−1, 0).

Consider the system given by equations (1)-(2) and using
a PD controller Cpd(s) = kp (1 + kds), the open-loop
response in the frequency domain is represented by

Qpd(jω) = kpα
1 + kdjω

(jω − a)
(
(jω)2 + 2ζωnjω + ω2

n

) e−jωτ . (8)

The phase expression in the frequency domain ω for (8) is
obtained as

∠Qpd(jω) = −
(
π − arctan

(ω
a

))
− ωτ + arctan (kdω)

− arctan

 2ζ
(
ω
ωn

)
1−

(
ω
ωn

)2


(9)

and the magnitude MQpd
= ‖Qpd(jω)‖ is expressed as

MQpd(jω) = kpα

√√√√ 1 + k2dω
2

(ω2 + a2)
(
ω4 + 2ω2

nω
2 (2ζ2 − 1) + ω4

n

) .
(10)

As in the proof of Lemma 1, to assure the counterclockwise
rotation to the point (−1, 0) in the corresponding Nyquist
diagram, it is sufficient to assure that MQpd(jω) is a
monotonically decreasing function of ω and that the angle
∠Qpd(jω) should be an increasing function around ω = 0
since ∠Qpd(0) = −π.

The decreasing property of MQpd
can be assured by

considering the equivalent condition

d

dω

(
M2
Qpd

k2pα
2

)
< 0

that after some computations produces

(
ω2
n

(
4a2ζ2 − a2

(
k2dω

2
n + 2

)
+ ω2

n

)
a4ω8

n

)
> 0

or equivalently, it should be satisfied

kd <

√
1

a2
+

(
2 (2ζ2 − 1)

ω2
n

)
. (11)

As in the case of the Lemma 1, since

d

dω
(∠Qpd(jω))

∣∣∣∣
ω=0

=
a

ω2 + a2
+

kd
k2dω

2 + a2

− 2ζωn(ω2 + ω2
n)

ω4 + 2ω2
nω

2 (2ζ2 − 1) + ω4
n

− τ

evaluating at ω = 0, it is obtained

d

dω
(∠Qpd(0)) = −τ +

1

a
+ kd −

2ζ

ωn
> 0

and therefore, the angle function will be increasing if

τ <
1

a
+ kd −

2ζ

ωn
. (12)

From (11) and (12) it is possible to choose kd within the
range
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τ − 1

a
+

(
2ζ

ωn

)
< kd <

√
1

a2
+

(
2 (2ζ2 − 1)

ωn2

)
. (13)

Finally, (12) can be rewritten by using (13) as the condi-
tion

τ <
1

a
+

√
1

a2
+

(
2 (2ζ2 − 1)

ω2
n

)
−
(

2ζ

ωn

)
. (14)

The following corollary provide useful procedures to com-
pute the range of kp values that stabilize system (1)-(2)
by a PD controller.

Corollary 1. Assume that conditions of the Theorem 1
hold. The range of kp values that stabilize system (1)-(2)
by means of a PD controller is given by

kp(ωc1) < kp < kp(ωc2)

where ωci for i = 1, 2 are the crossover frequencies and
kp(ωci) are given by

kp(ωci) =
1

α

√(
ω2
ci + a2

) (
ω4
ci + 2ω2

nω
2
ci (2ζ2 − 1) + ω4

n

)
1 + k2dω

2
ci

(15)

with ωc1 = 0 and ωc2 being the smaller, non null, positive
solution of

arctan

(
ωc2
a

)
−ωc2τ+arctan (kdωc2 )−arctan

(
2ζ
(ωc2
ωn

)
1 −
(ωc2
ωn

)2
)

= 0.

(16)

Proof. In order to assure the required counterclockwise
rotation to the critical point (−1, 0) when the condition

τ < 1
a +

√
1
a2 +

(
2(2ζ2−1)

ω2
n

)
−
(

2ζ
ωn

)
holds, consider the

magnitude expression MQpd(jω) = ‖Qpd(jω)‖ given in (10)
which decrease monotonically.

From the proof of Theorem 1, the properties of the
function ∠Qpd(jω) states that starting with an adequate
magnitude and the initial value ∠Qpd(0) = −π there
exists a counterclockwise rotation to the point (−1, 0).
This implies that the phase diagram intersects the negative
real axis for some positive frequency different from zero.
From this fact, the range of kp values that stabilize
system (1)-(2) is given by kp(ωc1) < kp < kp(ωc2),
such that the frequencies ωc1 y ωc2 are computed from
(16). Then, substituing that values in (15), we obtain
the corresponding values for kp such that the controlled
system is stable. Consequently, there exists exactly one
counterclockwise rotation to the point (−1, 0).

5. EXAMPLE

The performance of the control strategy is evaluated by
considering the linear approximation of an unstable con-
tinuously stirred tank reactor (CSTR). The following ex-
ample has been taken from Bequette (2003). This model

is particularly applied to the chemical process of a Propy-
lene Glycol reactor system. A general description of the
CSTR is shows in the Fig. 1 and a mathematical model is
presented below.

Fig. 1. Unstable Continuously Stirred Tank Reactor
(CSTR).

Differential equations of the process shown in Fig. 1 are
characterized as follows:

(1) Balance of the mass on component A is

dCA
dt

=
F

V
(CAf − CA)− k0e

−∆E
RT CA.

(2) Energy balance in the reactor,

dT

dt
=
F

V

(
Tf − T

)
+

−∆H

RT
k0e

(
−∆E
RT

)
CA −

UA

V pCp
(T − Tj) ,

(3) Energy balance in the cooling liquid,

dTj

dt
=
Fjf

Vj

(
Tjf − Tj

)
+

UA

VjpjCpj
(T − Tj) ,

where k0 is thefrequency factor, ∆E is the activation
energy and R is the ideal gas constant

The variables and parameters are now defined such as
independent variables (input variables): Product flow A
(F ), flow cooling liquid (reactor jacket) Fjf . Dependent
variables (output variables): Concentration of the product
A (CA), temperature in the Reactor (T ), temperature in
the cooling liquid reactor jacket (Tj). Measurable distur-
bances: A product concentration A in the reactor input
(CAf ). Input temperature product A (Tf ).

The parameters of the systems are characterized as follows:
V = 85ft3, −∆E = 32.400Btu/lbmol, U = 75btu/hr◦F ,
−∆H = 39.000Btu/lbmolPO, A = 88ft2, k0 =
16.96x1012hr−1, R = 1.987Btu/lbmol, Vj = 21.25ft3 ◦F ,
pcp = 53.25Btu/ft3 ◦F , pjcpj = 55.6Btu/ft3 ◦F .

Let us consider the jacket temperature as the manipu-
lated variable and the concentration of the CSTR as the
controlled variable. The next step is to linearize around
an operating point the previous differential equations de-
scribing the system. The operating point is characterized
under the following conditions (Bequette, 2003) : CAf =
0.132lbmol/ft3, CA = 0.066lbmol/ft3, F = 340ft3/hr,
Fjf = 28.75ft3/hr, T = 101.1◦F , Tj = 55◦F , Tf = 60◦F ,
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Tjf = 50◦F . To linearize the differential equations, a
Taylor series approximation, or a Jacobian matrix linear
transformation around the operating point may be used.
From the system linearization, it is possible to obtain a
mathematical model using the following transfer function

CA(s)

Tjf (s)
=

0.0646

s3 + 9.332s2 + 16.89s− 34.45
e−.25s, (17)

which has an unstable pole, a pair of complex conjugate
poles. For the current example, the parameters of the
system are a = 1.1772, τ = 0.25, ζ = 0.97 and ωn = 5.4.

Since the stability condition given in Theorem 1 is sat-
isfied, so this system can be stabilized by a PD con-
troller. According to (13), a stabilizing gain of kd is taking
from the range −0.1904 < kd < 0.8846. Let us consider
kd = 0.4, then ωc = 3.5266 is solved numerically from
(16), and 34.439 < kp < 87.5176 is determined from (15).
For this example consider kp = 40, such that Cpd(s) =
40 (1 + 0.4s). The Nyquist diagram is shown in Fig. 2,
which indicates that the Nyquist criterion holds.

Fig. 2. Nyquist Diagram for PD controller

Finally, the Fig. 3 illustrates the performance of the output
response of the system which is stabilized by means of the
PD controller.

Fig. 3. Output signal for PD controller

6. CONCLUSION

Unstable systems with time delay are commonly found in
industrial processes (such as material transport and chem-
ical processes). This time delays add complications for
study, besides being a challenge for system stabilization.
This paper presents necessary and sufficient conditions for
the stabilization by PD controller of third-order systems,
with one unstable pole and couple of possible complex
conjugate stable poles and time-delay. The comparable
result has been reported in the literature in Lee et al.
(2010) where only stable real poles of the model are pre-
sented. However, notice that the proposal of this work is to
give a further step in this topic, addressing the particular
problem of time-delayed systems with possible complex
conjugate poles. In the same topic, this PD controller,
provides a less restrictive condition than the simple P
Control, such that, the delay can be larger than in the
case of P Control. Besides, it is provide the procedure
for determining the ranges of the stabilizing controller
parameters kp and kd. The adequate performance of the
proposed strategy was illustrated by means of an academic
example.
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