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Abstract: In general, heart medical diagnosis devices are reliable and efficient; however, they are only
present in huge or modern hospitals. Heart murmurs are one of the typical heart problems. In this paper,
we propose a radial wavelet neural network (RWNN) classifier for cataloging two real heart murmurs
(pulmonary insufficiency, PI; and tricuspid insufficiency, TI). The extended Kalman filter (EKF) is
used as a learning algorithm for the RWNN. The network inputs are nineteen dimensional features,
extracted from real cardiac cycles, and three classification outputs. The proposed model captures the
complex nature of the heart cycles more efficiently than a multilayer perceptron trained with Levenberg-
Marquardt training algorithm and classifies them accurately. The proposed model is trained and tested
using real heart cycles in order to show the applicability of the proposed scheme.
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1. INTRODUCTION

There are many efficient and reliable heart diagnosis devices.
Unfortunately, this modern technology is not available in all
hospitals. Cardiac diagnosis is typically started by an auscul-
tation where heart sounds are captured by a stethoscope, from
which a medical doctor, depending on his hearing capabilities
and training, listens and interprets the acoustic signal. This
method of diagnostic is uncertain Watrous et al. (2002), mostly,
due to the fact of the human ear loses the acoustic frequency
sensitivity through the years B.L.Fishleder (1978). Even though
auscultation is not the only way for cardiac diagnosis, it is
considered as a primary tool due to its simplicity. Phonocar-
diography is a technique where heart sounds are registered
B.L.Fishleder (1978); this method has an important place as a
fortifier of the acoustic interpretation throughout sound graph-
ics (phonocardiogram) from an acoustic-electric transducer.
Through a phonocardiogram (PCG)), it is possible to analyze the
heart acoustic signal from timing, frequency and location point
of view and its components in an objective and repetitive form.
Heart murmurs are abnormal sounds, which are appreciable
in some parts of the vascular system. Neural networks have
demonstrated adequate results in PCG’s classification Abdel-
Motaleb and Akula (2012), Shamsuddin et al. (2005).

Due to their nonlinear modeling characteristics, neural net-
works have been successfully implemented in control systems,
pattern classification and time series forecasting applications.
Wavelet transform has been used as signal pre-processor and in
neural network classifiers input space feeders Barschdorff et al.
(1995), Turkoglu and Arslan (2001); in Gupta et al. (2005),
Hadi et al. (2008) up to 90% classification accuracy is achieved.
Wavelet neural networks, a combination of wavelet theory and
neural networks Veitch (2005), have been used as classifiers
in real applications Tian and Gao (2009), Oskouei and Shan-
behzadeh (2010). The typical training approach for multilayer
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perceptrons is the back propagation through time. However, it
is a first order gradient descent method, and hence its learning
speed could be very slow Leung and Chan (2003). Another
well-known training algorithm is the Levenberg-Marquardt one
Norgaard et al. (2000); its principal disadvantage is that global
minimum is not guaranteed and its learning speed could be slow
too, depending on the initialization. In past years, extended
Kalman filter (EKF) based algorithm has been introduced to
train neural networks Feldkamp et al. (2003). With the EKF
based algorithm, the learning convergence is improved Leung
and Chan (2003). The EKF training of neural networks, has
proven to be reliable for many applications over the past ten
years Feldkamp et al. (2003). However, EKF training requires
the heuristic selection of some design parameters which is not
always an easy task Ricalde et al. (2011).

In this paper we propose a new wavelet neural network (WNN)
architecture with EKF training algorithm for classifying heart
cycles with murmurs. In order to get the real cardiac sound
registers, a monitoring cardiac platform was designed and built.
WNN input vectors are amplitude features extracted from seg-
mented cardiac cycles, which (cycles) are obtained via wavelet
transform. The applicability of this architecture is illustrated
via simulation of the proposed WNN with real heart murmurs
in order to show the potential applications for medical cardiac
diagnosis devices. The remainder of this paper is organized as
follows. Section 2 is dedicated to established medical and math-
ematical background. Section 3 describes the platform built to
acquire and analyzed heart sounds and murmurs. Section 4 and
5 explains the segmentation and feature extraction algorithms
performed in order to divide cardiac cycles from PCG’s and
to extract features from segmented cardiac cycles respectively.
Section 6 is dedicated to describe the neural model, where the
training phase relies on an extended Kalman filter which is able
to deal with the nonlinearity of the model. Section 7 explains
methodology used in this research project. Finally, Section 8
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reports the experimental analysis of the proposed scheme ap-
plied to the problem of classifying real heart murmurs.

2. HEART SOUNDS AND MURMURS

Blood circulation through human body is possible due to the
organ that functions as a pump to impulse it: the heart. Heart is
compound of 2 separate pumps and four chambers, each side of
the heart is compounded of two cavities. Heart has four valves,
2 per side. In the right side we have: aortic and tricuspid valves.
In the left side: pulmonary and mitral valves. All the events
related from the start of a heartbeat till the beginning of another
compose the cardiac cycle. Cardiac cycle (CC) duration varies
depending on patient. In a young healthy man, CC duration is
862ms approximately Cabrera Rojo et al. (1997). Heart sounds
(HS) are listened by a stethoscope. It is possible to distinguish
four HS, but only the first two are sufficient to describe the
cardiac valves activity. The first heart sound (S1) is produced by
the closure of the mitral and tricuspid valves, the second heart
sound (S2) by the closure of the pulmonary and aortic valves.
S1 is the first heart sound in the temporal space followed by a S2
and again by a S1. A CC is accomplished with the occurrence of
one S1 to another S1 where the HS frequency ranges within 30-
600Hz B.L.Fishleder (1978). A microphone within that range
is suitable to be employed for the cardiac sounds measurement.
The graphical record of the HS is called a phonocardiogram.
Heart murmurs are abnormal sounds. When the hole of a valve
is squeezed, is called stenosis. When the valve is incompetent
to close; this is called insufficiency or regurgitation. Abnormal
HS can be watched in a PCG, see Figure 2. From Djebbari and
Bereksi Reguig (2000) is known that S1°s and S2’s frequency
range is within SOHz to 200Hz Ganong (2001).

3. CARDIAC MONITORING PLATFORM

In order to register and capture HS as a PCG, is necessary
to have a hardware platform to record them. For this study,
a cardiac monitoring platform (CMP) is built. It covers an
acoustic-electric (AE) transducer, a signal conditioner (SC) and
a USB (Universal Serial Bus) microcontroller. The transducer
is composed by a stethoscope coupled with an Electret micro-
phone to register the cardiac sounds and connected to the signal
conditioner. The sensor covers the cardiac sounds bandwidth
from 30Hz-600Hz B.L.Fishleder (1978). A signal conditioner
(SC) is used to amplify the electric signal from sensor (Electret)
and as an anti-aliasing filter (4KHz cutoff low pass filter) for
the f; = 8KHz sampling frequency chosen. Finally, a USB-
microcontroller (uC) is used in order to receive the signal from
SC, which is connected to the analog to digital converter (ADC)
built-in the uC and send it to computer via USB. In the com-
puter, HS are shown as graphical signals (PCG’s) and stored via
designed Matlab interface software. CMP is shown in Figure 1.
Cardiac registers are stored in the computer to be analyzed.

Every PCG stored by the CMP, has a duration of 15 seconds
and is compounded of many CC. Every cardiac cycle has
similar behavior about the heart valve where it comes from. It
is necessary to make a segmentation of every PCG in single
CC in order to perform a medical diagnosis. Cardiac signal,
like other biomedical signals, is non-stationary and changes
its properties through time. Spectral analysis methods give
information about frequency content but they do not involve
the time. Continuous time Wavelet transform (CWT) performs
time domain analysis on different scales (frequencies), what
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Fig. 1. Cardiac monitoring platform (right); aluminum case and
internal board (left)

allows a time space-frequency analysis of a signal. Due to
time-frequency analysis and non-stationary behavior of cardiac
signal, CWT is frequently used in the analysis of biomedical
signals Unser and Aldroubi (1996).

Tricuspid insufficiency PCG register
T T T

Normalized Amplitude

Fig. 2. A tricuspid insufficiency PCG register recorded by CMP

3.1 Wavelets

Wavelets are a class of functions used to place a given function
in both position and scaling, usually denoted as (). They are
used in applications such as signal processing and time series
analysis Veitch (2005).

The continuous time wavelet Transform results(i.e. coeffi-
cients) describes the correlation between the signal of inter-
est and the wavelet function through several translations and
dilations; these results are called coefficients. For a complete
explanation of mathematical criteria about wavelets and con-
tinuous time wavelet transform, see Addison (2010). Morlet
wavelet is the wavelet function that better supplies frequency-
time location for the analysis of biomedical signals Unser and
Aldroubi (1996).

4. SEGMENTATION

Once a cardiac register is acquired, CWT is applied with the
Morlet wavelet and a three dimensional graphic is obtained for
the discrete time acquired data, scales and coefficients. The
scale can be switched by frequencies through the following
equation:

Jo

f=r M

See Addison (2010) for details. Where fy is the central fre-
quency of the wavelet (i.e. The frequency where the module of
the Fourier transform of the wavelet signal is maximum) and
Ts = 1/ fs. The continuous wavelet transform W, , € R/1 # 11
computation is performed over the intervals a € [d/, f1] (i.e.
a's values that can be transformed to frequency units with
equation (1), that were computed) and b € [T5s,t1] (i.e. set
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of step samples in the 15s record length of every PCG; from
Ts, as first value, to ¢1), where fj(scale value) represents the
maximum scale value(frequency) chosen to be computed; t; =
155 % fy = 15s % 80002272 = 120,000 samples, fixed
max number of discrete time data; ' € RT. In order to find
S1’s from a PCG, W, is computed with a € (0,200] and
b € [Ts, ti1], a coefficient matrix T C W, is extracted from
row 33 to 65 (100Hz to 196Hz) of W, ; what can be noticed
in Figure 3. Now, the half maximum energy value of W, ;) is
taken as reference (ref). Then, we go through T, column by
column, evaluating the function f(u) for each value T; ; as

f(u):{()ifu<ref ?)

uif u>ref

These results are stored in M € R/t **_ Then a row vector
busq is generated by the maximum values of all the columns
of M. Where busq is described by:

busq = max(colm(i)) fori=1,2,3,...,120,000 (3)

where coly (i) describes the ith column vector of matrix M.
The tones S1 and S2 are within M and is necessary to identify
them from it. The tone S1 is expected to have three ideal char-
acteristic maximum amplitude components and the S2 tone,
two B.L.Fishleder (1978). Even when in practice is difficult to
find these 3 components for S1, more amplitude oscillations in
PCG’s are found in the S1. This fact is used in order to distin-
guish S1 from S2 within M. A second treatment is performed
as follows: busq is now composed of zeros and values upon
ref/2 (different than zero). Inside busq, we proceed to navi-
gate through the generated zeros, looking for a value different
than zero. Once it is found, n the number of changes from a
value different of zero to zero and vice versa are analyzed in
order identify a S1 tone. If a second heart sound would have
been in the search inside busq with m changes, about the three
ideal amplitude components of S1’s, it is expected to obtain
n > m or in the worst case, to have n = m B.L.Fishleder
(1978). In this work, n = 4 is taken, since at least two ampli-
tude components are expected to appear in S1, which represents
four changes. Now, we take x as the changes discovered in
the finding process. A third treatment is performed as follows:
we delimit the beginning of an interval of a possible S1 with
the finding of a value different than zero within busq. Once
x > n, a reference of [ = 1200 zeros are counted in order
to delimit the end of a S1. More changes can be found, but
till [ zeros are reached, interval is closed and stored as a S1.
l represents 150ms with ¢, = 125us, it is a little more than
one octave of the average of CC duration in young healthy man
(862ms) Cabrera Rojo et al. (1997), that avoids to take a finding
interval too long including more outcomes (i.e. possible S2’s or
signal oscillations due to patient movements). [ is also used to
discard any invalid S1 interval. Once = > 0, [ starts to count.
If x > n is not satisfied and [ reaches 1200 zeros, a possible
S1 interval is rejected. In order to find S2, the outcomes of the
S1 are used in the time domain of the PCG. From a pair of S1
tones, t = [ = 150ms milliseconds are shifted to the center,
among this interval of time, the maximum value is stored as a
S2. This algorithm is used for all existence pairs in the PCG and
applied for no murmur, tricuspid and pulmonary insufficiency
PCG’s.
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Wavelet transform of pulmonary insufficiency PCG register

Wavelet transform coeffici

Scales a (frequency)

Discrete time data b or number of sample

Fig. 3. Wavelet transform plot of pulmonary insufficiency PCG
register

5. FEATURE EXTRACTION

Now, that we have segmented PCG’s, a feature extraction of the
shape of the signal is performed. Feature extraction values are
extracted from the S1-S2 process, called systole; and from S2-
S1 process, called diastole. Cardiac cycle duration varies from
cycle to cycle in the same patient and from patient to patient.
Then, a feature extraction algorithm independently of the cycle
duration is necessary. It must be also capable of modeling
amplitude shape of the murmurs to be delivered to the neural
network. To reach this goal, an algorithm of middle relative
divisions made recursively upon each division generated on a
symmetric way is performed, taking previous S1’s and S2’s
outcomes. A S1 and S2 is taken, a middle time division is made
among them. Time divisions intervals created by the first one
are divided again symmetrically and so on. Nine divisions are
taken in this way. Extreme borders divisions are taken from S1’s
and S2’s outcomes and translated ¢ = [ = 150ms milliseconds
to the center, to ensure S1’s and S2’s oscillations have been
left behind. Upon each division, a feature can be extracted. All
points chosen are used as neural network inputs. However, to
maximize feature extraction performance, a time neighborhood
€ is taken and the maximum amplitude value between this
vicinity is chosen as feature. A minimum amplitude feature
in each division is taken as well, to better model murmurs
oscillations. In addition, a small  amplitude interval is selected
to qualify if a feature must be cleared to zero, in order to benefit
neural network effectiveness. PCG’s registers are normalized in
the closed interval of [—1,1], 4 = [—0.05,0.05] and vicinity €
= 12.5ms are taken. 9 points for minimum and 9 for maximum
values at divisions are taken. It represents a total of 18 features
(9 maximum and 9 minimum) from diastole and 18 features
for systole of every CC and of all PCG’s registered. Systole or
diastole features are used depending on heart murmur disease.
In Figure 4, features extracted from several heart murmurs
PCG’s are shown.

6. PROPOSED MODEL

A Neural network (NN) is trained to learn an input-output map.
Theoretical works have proven that, even with just one hidden
layer, a NN can uniformly approximate any continuous function
over a compact domain, provided that the NN has a sufficient
number of synaptic connections Alanis et al. (2010).
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Features extraction, tricuspid insufficiency PCG register
T T T

Normalized Amplitude

Fig. 4. Segmented tricuspid insufficiency PCG register with
features extracted marked

6.1 WNN

A wavelet neural network generally consists of a feed-forward
neural network, with one hidden layer, whose activation func-
tions are taken from a wavelet family.

Radial Wavelets A wavelet function ¢ , to be considered as
radial, has to have the form

¢ (x) = o (|l=[]) )

1

where |z]| = (272)%,2 € R",¢ : R — R is a univariable
function. A neuron which activation fuction is a wavelet is
called a wavelon. Radial multidimensional wavelons (RMW)
have the following computational complexity: the computation
of ¢(x) requires, the norm of x and the evaluation in the uni-
variable function ¢. This complexity is comparable with the
multidimensional wavelets of inner product shown in Zhang
and Benveniste (1992). RMW are introduced in Zhang (1992)
and are different than the shown in Zhang and Benveniste
(1992). In Borowa A. (2007) RMW characteristics are exposed
that make them to be consider as better choice than the process-
ing units shown in Zhang and Benveniste (1992).

6.2 The EKF learning algorithm

The Kalman filter (KF) estimates the state of a linear system
with state and output additive white noises Sanchez Camperos
and Garcia Alanis (2006), Chui and Chen (2009), Song and
Grizzle (1992). For KF-based neural network training, the net-
work weights become the states to be estimated. In this case the
error between the neural network output and the measured plant
output can be considered as the additive white noise Haykin
(2001). Although the white noise assumption is not satisfied,
the algorithm has been efficient in real applications. Due to
the fact that the neural network mapping is nonlinear, an EKF
type is required Sanchez et al. (2004), Sanchez Camperos and
Garcia Alanis (2006). The training goal is to find the weight
values which minimize the prediction error. EKF learning algo-
rithm is described by

wk+1)=w(k)+ngK (k) [y (k) — (k)] 5)

K (k) = P (k) H” (k) [R (k) + H (k) P (k) HT (k)] " (6)
e(k) =y (k) — g (k) (7
Pk+1)=P(k)— K(k)H (k)P (k) +Q (8)

where e(k) € R is the output estimation error, P (k) € RN ¢ N
is the weight estimation error covariance matrix at step k,
w (k) € RN is the weight (state) vector, N is the respective

144

number of neural network weights, y (k) € R is the plant
output, where S is the number of outputs; § (k) is the NN
output, K € RN = S is the Kalman gain, Q € RN*N s the
NN weight estimation noise covariance matrix, 0 < nx < 1is
the learning coefficient, R € RS*S is the error noise covariance.
H ¢ RSN is a matrix, in which each output (y;), is derivative
with respect of each weight (w;), defined as follows:

T
Hy (F) = ]
Ow; () | iy = w1

ij
where ¢ = 1,...,Sand 5 = 1,...,N. Usually P,Qy R
are initialized as diagonal matrices, with initial entries P (0) ,
Q@ (0) y R(0) respectively. Additionally H, K and P for the
EKF are bounded; for a explanation of this fact, see Song and
Grizzle (1992).

6.3 Proposed RWNN classifier

The proposed RWNN has the potential to detect several cardiac
anomalies depending on the registered data. The RWNN has an
entry layer, one hidden wavelon layer and a linear output layer
with sigmoid functions. The sigmoid output functions images
are defined within the interval (—1,1) € R.

The RWNN has 19 connections to the hidden layer (through
the weight matrix W1). The outputs from the hidden layer are
connected (through the weight matrix W2) to the output linear
layer and finally passed through sigmoid functions.

The first 18 input values are extracted as amplitude features
from every cardiac cycle. The nineteenth input is a fixed value,
from the auscultation focus source of the cardiac cycle (pul-
monary, 0.1; tricuspid, 0.2 and no murmur PCG, 0). The neural
outputs are 3: no murmurs (NM) first, the second correspond
to PI and the last one to TI. Criteria of the RWNN outputs (i.e.
due to possible infinite values in the sigmoid function image)
is chosen as three zones: high, low or uncertain. This criteria
is defined as 0 < low < 0.25, 0.25 < uncertain < 0.85,
0.85 < high < 1. The main task of the RWNN is to obtain
a high in the correct neural network output and low in the left
ones; if this happens, we considered the cycle as acceptable
(A), if not, an error (Err). We consider a false negative (FN)
when outputs that must be cleared reach low (i.e. what is cor-
rect), for a given cycle, but net says low instead of high, in the
proper output. False positives do not apply in this research due
to the absence of PCG’s registers with diseases different than
PI and TI and the definition of an Err. An uncertain (U) CC is
considered if wrong outputs reach low (i.e. what is correct) and
the correct one remains on the uncertain zone instead of high.
The RWNN shown in Fig 5 is described by

zj = [z (wic3;) ] (10)
2
e ((x; = b)/a;) = (na = ((; - -)/a») )
eap (= ((z; — b;)/a;)* /2)
vk = Z w; () — bj)/az) wik + Ui (12)
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yr =1/ (1 + exp(—asvi)) (13)

where n = is the number of inputs from the feature extraction
algorithm (19 inputs), m = is the number of wavelons in
the hidden layer, & = number of outputs, as; = sigmoid
slope parameter, §j;, = the bias parameters, w;; is the ijth
element of W1 and wjy, the jkth element of Wy, dim(W1) =
19 x m,dim(W3) = m x k, dim(W) = dim(Wy) +
dim(Wg2) + k = (19 x m) + (m x 3) + 3. ¢; is the radial
wavelet activation function for the jth wavelon, called, mexican
hat radial wavelet. Each ¢; wavelet has its own b; and a;
parameters that represent translation and dilation parameters
for the jth wavelon, respectively. ¢; also has n, as a scaled
parameter of the wavelet. Parameters are initialized as follows:
a L € R is taken, a’s are set to 2 and b's to 2= %, W1 and
W2at 0.1. L = 0.5 and a;, = 0.6, n, = 10 are taken. b's
and a’s in each wavelon are not modified by learning algorithm
during training. ¥y bias parameters are initialized as the average
of all the available observations (desire target outputs) and are
involved as weights in EKF learning algorithm. Only W1 and
W2 are modified by EKF learning algorithm. Initialization of
W1, W2, 's, a's, and 7, are based on wavelet networks theory
Veitch (2005); Zhang and Benveniste (1992) with adjustments
on weights and L value. EKF learning algorithm parameters
are initialized on identity matrices for simplicity, scaled with
scalar values, where scaled values satisfied ,,,= (0, 3] € R and
satisfied P(0) > R(0) > Q(0) . P(0), Q(0), R(0), ng, nx and
as are heuristically determined. Implemented RWNN is shown
in Figure 5.

Fig. 5. Proposed RWNN

where f,,sc denotes the nineteenth input and is related to the
auscultation focus source, mentioned before. sig is the sigmoid
function in (13) with slope parameter a.

7. METHODOLOGY

As first step, real PCG’s with murmurs are registered from
patients with the CMP (109 cardiac cycles acquired). For the
registered data with the CMP, the continuous time wavelet
transform is applied for analysis via software, as part of the
segmentation stage. Then, the feature extraction algorithm is
applied and features for every cardiac cycle are computed.
Some cardiac cycles are selected to train the neural network,
and the remaining of the data is used to test the neural network
performance. See next section for more details.

8. EXPERIMENTAL RESULTS
The RWNN is trained by EKF with 17 training examples, 9 PI,

5 TT and 3 NM; and tested with 92 cardiac cycles, 38 PI (first
cycles) and 54 TI cycles. Which represents a collection of 109
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real cardiac cycles acquired with the CMP. Mean square error
(MSE) is used as a performance measure for every output. See
Ricalde et al. (2011) for MSE function description.

RWNN performance is compared with a multilayer perceptron
(MLP) structure with an exact parallel architecture. MLP struc-
ture is shown in Figure 6. Where b;; and by, are bias param-
eters. Linear functions on neurons are displayed as diagonal
lines and tansig refers to sigmoid functions of image [—1, 1] €
R. This structure is trained with Levenberg-Marquardt (L-M)
learning algorithm initialized in ¢ = 0.1, 4 .inc =8, p .dec =0.1.
Where p is a scalar parameter, u.inc and p.dec increase and
decrease factors, respectively. Levenberg-Marquardt learning
algorithm and neural network functions such as activation and
output functions, are used for comparison. Training and perfor-
mance results for networks are shown in Table 1 and Table 2,
respectively. Where Epochs, are the number of times training
data (cardiac features from cardiac cycles) are submitted to the
RWNN in order improve the learning through EKF-training.

Fig. 6. Neural network structure for comparing

Table 1. Training results

RWNN MLP
Learning EKF L-M
Weights 223 233
Wavelons/Neurons 10 10
Epochs 90 12
MSE (Outputs average) ~ 4.6355¢=%  8.63¢=9

Table 2. Performance results

RWNN MLP
Learning EKF L-M
Acceptable 89 70
Uncertainty 0 4
Errors 2 18
False negatives 1 0
Accuracy 96.74%  76.08%

9. CONCLUSION

This paper proposes the use of a RWNN trained with EKF
learning algorithm, to classify segmented real heart murmurs
cycles. Experimental results showed that the proposed RWNN
is very well suited for classification of real PCG’s segmented
cycles as shown in Table 2. Even when neural network trained
with Levenberg-Marquardt used for comparison (See Figure
6 and Table 1) was significantly better at training, adjusting
weights for converging at lower output error in less epochs
(12 epochs) than RWNN, it presented superior generalization
capabilities. Future work on implementing RWNN aims to be
in the development of reliable medical heart instrumentation.
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