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Abstract: In this paper, a fault tolerant Fuzzy-Model-Predictive Control (FMPC) with integral
action method for a class of nonlinear systems is proposed. At each sampling time, MPC solves an
optimization to achieve desired set points and control objectives. The feasibility of optimization
problem provides the guarantee of the nominal asymptotic stability. However the optimization
can be infeasible due to faults. This motivates the development of the proposed approach to
recover feasibility without violating constraints imposed on control inputs and system states.
Nonlinear systems subject to actuators and/or sensors faults are described by Takagi-Sugeno
(T-S) fuzzy model. The objective of this approach is to design a Fault Tolerant Controller
(FTC). State vector and faults are estimated by a T-S fuzzy observer. The gains of the fuzzy
observer and the pre-stabilized control law are obtained by solving a Linear Matrix Inequality
(LMI) derived from the Lyapunov theory. The validity of the proposed FTC strategy with
Unmeasurable Premise Variables (UPV) and its application to faults tolerance is illustrated by
an academic example.
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1. INTRODUCTION

For nonlinear systems, there exist some form of con-
straints due to physical, economic, safety or performance
requirements on control inputs, control rates and/or sys-
tem states. The ability to handle input and states con-
straints systematically in the control algorithm is one
of the primary advantages of MPC. The MPC structure
allows FTC to be embedded: constraints can be rede-
fined, internal model and the control objectives can be
changed. As the MPC is implemented in regulator form,
the desired state of the reference model must be subtracted
from the measured plant state. A large class of nonlinear
systems can be well approximated by T-S fuzzy model.
The T-S fuzzy modeling is based on the decomposition
of the nonlinear system dynamic behavior around several
operational areas (Takagi and Sugeno, 1985). According
to the area where the system is, each sub-model con-
tributes more or less to approximate the overall system
behavior (Nagy, 2010). The Stability and stabilization of
T-S fuzzy models are studied in (Tanaka et al., 1996),
(Tanaka et al., 2001) and (Aouaouda et al., 2013). Among
all the proposed approaches, Lyapunov theory and for-
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mulation of the stability conditions in terms of LMI are
used. (Tanaka et al., 1998) studied quadratic stability but
they found that it is difficult or impossible to calculate
a common Lyapunov matrix satisfying a set of LMIs,
as well as the number of submodels increases. (Tanaka
et al., 2003) developed polyquadratic and non-quadratic
approaches. These approaches are extended in (Bergsten
and Palm, 2002) for observer design applied to state and
unknown input estimation. Direct measurement of main
characteristics of nonlinear systems is not available or very
expensive. Estimation and observation techniques of these
dynamic parameters are required for a control. In this
paper, fuzzy model based observer is proposed for T-S
fuzzy systems. The objective is to ensure the convergence
of the state estimation errors to zero. When fault occurs,
the main objective is to conserve the stability and the
performances of the system. This paper relies on the idea
of accommodating and tolerating actuators and/or sensors
faults to maintain current performances closed to desired
performances. The layout of this paper is as follows: in
second section, a T-S fuzzy modelling methods are given.
Then, FMPC with integral action is proposed. The sec-
tion 4 shows the simulation results. Conclusion is finally
presented in the last section.
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2. T-S FUZZY MODELLING

The T-S fuzzy model is based on rules such as (Takagi and
Sugeno, 1985): IF PREMISE THEN CONSEQUENCE.
Premises are obtained from linguistic propositions allow-
ing the evaluation of weighting functions. The conse-
quences correspond to sub-models. The considered system
is based on an interpolation between the local linear mod-
els. Assume a set of N local models describing the dynamic
behavior of the nonlinear system in different operation
areas. Let h and g two nonlinear functions and y ∈ <p

the output such as, the system state space representation
is: {

ẋ(t) = h(x(t), u(t))
y(t) = g(x(t))

(1)

where x ∈ <n stands for the state and u ∈ <m de-
notes the control input. Activation function (weighting)
µj(x(t), u(t)) is normalized; it determines the activation
degree of the jth associated local model, by providing a
gradual transition from this model to local model neigh-
bors. These functions are generally triangular shaped, sig-
moidal or Gaussian and satisfy the following properties:

N∑
j=1

µj(x(t), u(t)) = 1 (2)

and 0 ≤ µj(x(t), u(t)) ≤ 1, ∀ j ≥ 0.
Three several methods can be employed to obtain a T-S
model, through identification and parameters estimation
from experimental data. Wang and Tanaka (Tanaka et al.,
1996) obtain this convex polytopic representation by a
direct transform of an affine model in the state. This
method doesn’t generate an approximation error and has
an advantage of reducing the local model number. The
other way is the linearization around different operating
points with A(θ) = ∇xh(x, u), B(θ) = ∇uh(x, u) and
C(θ) = ∇xg(x, u). From mathematical viewpoint, this
corresponds to approximate the nonlinear function h(.)
through its tangent plane in the point (xi, ui). In this
case, the number n of the local models depends on the
desired precision of the modelisation, the nonlinear system
complexity and the choice of the activation functions
structure. Polytope is obtained with N = 2r peaks,
where r is the number of premise variables. In (Ben
Hamouda et al., 2013) and (Ben Hamouda et al., 2014a),
the proposed non stationary linearization of a class of
nonlinear system is clearly presented in three steps. The
fuzzy model obtained is constituted by two sets of sub-
Linear Time Invariant (LTI) model representing the lower
and upper bounds (θ−, θ̄), as described in (Tanaka et al.,

2001), (Aouaouda et al., 2013), (Ichalal et al., 2012),
(Ben Hamouda et al., 2014b) and (Djemili et al., 2012).
The precise knowledge of the upper and lower bounds is
not always possible. In fact, premise variable depend on
nonlinearities system. For Some systems the lower and
upper bounds are unknown. The influence of this problem
are discussed in (Nagy, 2010) through an example.
The T-S fuzzy model obtained is given by the following
relation: 

ẋ(t) =
∑N

j=1
µj(θ) (Ajx(t) +Bju(t))

y(t) =
∑N

j=1
µj(θ)Cjx(t)

(3)

where Aj ∈ <n×n, Bj ∈ <n×m and Cj ∈ <p×n are
constant matrices and θ represents the premise variables
vector depending on system states and input (Orjuela
et al., 2009), (Nagy, 2010) and (Rodrigues et al., 2008).
{Aj , Bj} are the sub-models asymptotically stable matri-
ces. The choice of the premises variables is based on a set
of criteria. These criteria are constructed in accordance
with stability analysis and/or observability objectives. The
choice of this set is important, as it affects the number of
sub-models and the global model structure. This degree of
freedom is used to facilitate the study of controllability,
observability and stability analysis (Tanaka et al., 2001)
and (Bergsten and Palm, 2002). A multimodel compound
of minimal number of sub-models is preferred. Premise
variables should depend on a minimal number of state
variables. The structure fuzzy model is described by the
weighting functions µj(θ). The jth rule of the T-S fuzzy
models is of the following form:
IF θ1(x, u) IS Mj1 AND ... AND θr(x, u) IS Mjr

THEN

{
ẋ(t) = Aj x(t) +Bj u(t)

y(t) = Cj x(t), j = 1, 2, ..., N

In the next section, a T-S fuzzy controller for nonlinear
systems subject to faults is proposed. The main objective
is to tolerate faults while achieving tracking desired tra-
jectory.

3. PROPOSED FAULT TOLERANT FUZZY-BASED
MODEL PREDICTIVE CONTROL STRATEGY

3.1 Studied MPC-based strategy

The aim of MPC is to minimize a cost function J :

Jk =

Hp∑
l=1

‖ yk+l − ydk+l|k ‖
2
Q +

Hu−1∑
l=0

‖ ∆uk+l|k ‖2R (4)

to compute the optimal control for xk+1 = Ājxk + B̄juk,
subject to the following constraints:

xmin 6 xl 6 xmax, where k + 1 6 l 6 k +Hp.

umin 6 ul 6 umax, ∆u = uk − uk−1,

∆umin 6 ∆ul 6 ∆umax, where k 6 l 6 k +Hu − 1

∆U =
[

∆uk ∆uk+1 · · · ∆uk+Hu−1

]T
where y is the predicted response and yd is the output de-
sired trajectory. The matrices Q and R are used to weight
the corresponding control errors and control actions. The
R matrix helps to keep the control inputs within bounds,
making sure that smooth control actions result.Hp andHu

are output and control prediction horizons, respectively.
In general, a short control horizon makes the system more
robust to uncertainties such as parameter variations. It
is also assumed that the dynamic system defined by the
model (Aj , Bj) is controllable. The controllability con-
dition is required to ensure that the MPC optimization
solved at each step is feasible. This optimization can be for-
mulated as a quadratic programming (QP) problem (Ma-
ciejowski, 2002). Only the first control increment ∆u(k)
is implemented and the optimization is re-solved at each
step. The feasibility with the MPC provides the guarantee
of the nominal asymptotic stability. When fault occurs,
the optimization may become infeasible.In the next sub-
section, an FTC strategy is proposed to recover feasibility
without violating constraints imposed on control inputs
and system states.
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3.2 The structure of the proposed FTC strategy

The FTC strategy scheme is given by Fig. 1. The method
uses a T-S fuzzy observer to estimate system states and to
detect faults (green part). The proposed FMPC approach
should maintain system output closed to the desired tra-
jectory obtained by the reference model and preserve sta-
bility conditions even when the faults occurs (black part).

System 
outputs
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Estimated 
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Fault Tolerant 
Control

Target 
trajectory

T-S 
Reference 

model

Reference

T-S Fuzzy 
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Activation functions

Premises set points
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Estimated 
faults

Nonlinear 
plant

S
U
P
E
R
V
I
S
O
R

Estimated 
Premises

Fig. 1. The Fault Tolerant Control strategy based on T-S
fuzzy diagnosis with UPV

The proposed jth control law signal generated (red part)
in the nominal operating is given by the following:{

uj
k+i|k = −kjx (x̂k+i|k − xk+i|k )− kjI x

I
k+i|k + qj ,

i = 0, . . . , Hu − 1 and j = 1, . . . , N
(5)

where ẋI = yd − y, k1
I = k2

I = 1 are the integral action
gain, x̂ represents the estimated state, ku1, ku2, . . . , kuN
are the N state feedback gains and qj the jth predicted
control input calculated by the FTC. After the end of the
control horizon, the MPC control qj is set to zero and the
control law becomes:

uj
k+i|k = −kjx (x̂k+i|k − xk+i|k )− kjI x

I
k+i|k , i > Hu (6)

Kale and Chipperfield (Kale and Chipperfield, 2005) in-
troduce a straightforward strategy by assuming state feed-
back as a baseline controller to which MPC control signals
are added. The pre-stabilization provides an effective tool
to guarantee nominal closed-loop stability using the MPC
controller, (Afonso and Galvao, 2010). Stability proofs of
such formulation are given in (Maciejowski, 2002). Provid-
ing further robustness and accuracy is the feedback aim
(Ben Hamouda et al., 2013). The integral action helps to
drive the tracking error to zero. In the faulty case, the
nonlinear system described by (1) becomes: ẋf (t) =

∑N

i=1
µi(θf )

(
Aixf (t) +Biuf (t) + Ei

af(t)
)

yf (t) =
∑N

i=1
µi(θf )

(
Cixf (t) + Ei

sf(t)
) (7)

where f ∈ <f is the fault signal and Ea and Es represent
the fault matrices with appropriate dimensions.
The strategy given by Fig. 1 is proposed to determine the
control inputs uf (t) such that:

• the closed-loop system (7) is stable,
• xf (t) converges asymptotically to the reference state

vector even in the presence of faults.

When the actuator and/or sensors are faulty, UPV depend
on the estimated faulty state vector, hence the fuzzy
control law is based on the estimated premise variables.
The following control strategy is then used:

uf (t) =
∑N

j=1
µj(θ̂f )

(
−f̂(t)− kjx

(
x̂f (t)− x(t)

)
+ u(t)

)
(8)

where f̂ is the fault estimate vector and u(t) is the nominal
control input given by (5) and (6), with the interpolation

mechanism (blue part): u(t) =
∑N

j=1 µj(θ̂(t))uj(t). The
activation functions µ1 and µ2 are defined by:

µ1(θ̂f ) =

θ̂f (x̂f )− θ
−

θ̄ − θ
−

and µ2(θ̂f ) = 1− µ1(θ̂f ) (9)

Generally, it is assumed that state variables are accessible
to control the system. Unfortunately in practice, it is rarely
that state variables are directly measurable. It is the reason
why a reliable estimation of unmeasurable variables is
necessary. The FMPC design objective is to compute kjx in
such a way that the closed-loop system including the state
and fault estimations is stable. To estimate simultaneously

x̂f (t) and f̂(t), a T-S fuzzy observer is used for system (7):
˙̂xf (t) =

N∑
i=1

µi(θ̂f )
(
Aix̂f (t) +Biuf (t) + Ei

af̂(t) + Li(yf − ŷf )
)

f̂(t) =

N∑
i=1

µi(θ̂f )
(
GiCi(xf − x̂f (t)) +GiE

i
s(f − f̂(t))

)
(10)

The extended error system, containing the two error dy-

namics xf (t)− x̂f (t) and f(t)− f̂(t):

(
ẋf (t)− ˙̂xf (t)

ḟ(t)− ˙̂
f(t)

)
=

N∑
i=1

µi(θ̂f )

(
Ai − LiCi E

i
a − LiE

i
s

−GiCi −GiE
i
s

)
(
xf (t)− x̂f (t)

f(t)− f̂(t)

) (11)

The tracking error e(t) = x(t)− xf (t) is given by:

ė(t) =

N∑
i=1

N∑
j=1

µi(θ)µj(θf )

(
(Ai −BiK

j
x)e(t)− Ei

a(f(t)− f̂(t))

−BiK
j
x(xf (t)− x̂f (t))

)
+In×n∆1(t)

(12)

where ∆1(t) =
N∑
i=1

(µi(θ)− µi(θf )) (Aix(t) +Biu(t)).

An extended error system ẽ(t), containing the tracking
error e(t), the state estimation error xf (t)− x̂f (t) and the

fault estimation error f(t)− f̂(t), can be expressed as:

˙̃e(t) =

N∑
i=1

N∑
j=1

µi(θ̂f )µj(θf )Ãij ẽ(t) + Γ∆(t) (13)

where:

ẽ(t) =

(
x(t)− xf (t)

xf (t)− x̂f (t)

f(t)− f̂(t)

)
,Γ =

(
In×n 0

0 In×n

0 0

)
, ∆ =

(
∆1(t)

∆2(t)

)
,

Ãij =

(
Ai −BiK

j
x −BiK

j
x −Ei

a

0 Ai − LiCj Ei
a − LiE

j
s

0 −GiCj −GiE
j
s

)
and

∆2(t) =

N∑
i=1

(
µi(θf )− µi(θ̂f )

)(
Aixf (t) +Biuf (t)

+Ei
af(t)

)
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Hypothesis 1. It is assumed that the following conditions
are checked:

• The term ∆(t) is bounded.
• The open-loop system is stable.

The stability analysis of system (14), guarantying the
tracking performance under the L2-gain, allows to intro-
duce the Theorem 2.

Theorem 2. The tracking error e(t), the state estimation

error xf (t)−x̂f (t) and the fault estimation error f(t)−f̂(t)
converge asymptotically to zero, if there exists symmetric
positive definite matrices X1 and P2, P3 = I, gain matrices
Kj

x, L̄i and Gi and a positive scalar γ̄ solutions of the
following optimization problem:

min
X1,P2,K

j
x,L̄i,Gi

γ̄,

such that the following LMIs are verified:
Ωi −BiK

j
x −Ei

a −BiK
j
x X1 X1 0

∗ Ξij Ψij 0 0 0 P2

∗ ∗ Zij 0 0 0 0
∗ ∗ ∗ −I 0 0 0
∗ ∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ ∗ −γ̄I 0
∗ ∗ ∗ ∗ ∗ ∗ −γ̄I

 < 0, (14)

Ωi = AiX1 +X1AT
i

Ξij = P2Ai +AT
i P2 − L̄iCj − CT

j L̄
T
i

Ψij = P2E
i
a − L̄iE

j
s − CT

j Ḡ
T
i

Zij = −ḠiE
j
s − Ej

s
T
GT

i

i, j = 1, . . . , N

The gains of the controller are Kj
x and the gains of the

observer are given by Li = P−1
2 L̄i and Gi. The attenuation

rate is obtained by γ =
√
γ̄.

Proof: The proof is given in the appendix.

4. SIMULATION RESULTS

Consider the nonlinear system described by the following
differential equations form (Ben Hamouda et al., 2013):

ẋ1(t) = −x1(t) + u(t)

ẋ2(t) = x1(t)− |x2(t)|x2(t)− 10

y(t) = x2(t)

(15)

Let us consider the following T-S reference model:
ẋ(t) =

∑2

j=1
µj(θ) (Ajx(t) +Bju(t))

y(t) =
∑2

j=1
µj(θ) (Cjx(t))

(16)

where A1 =
[
−1 0
1 −2θ̄

]
, A2 =

[
−1 0
1 −2θ

−

]
, B1 = B2 =

[ 1 0 ]
T

, C1 = C2 = [ 0 1 ] and θ = |x2| with θ̄ = 9.5 and
θ
−

= 0.5. The choice of the values was made based on the

respect of the activation function propriety, as explained
in the second section (part B). The objective is to design
a constrained FMPC. Through figures, simulation results
demonstrate the effectiveness and the applicability of the
proposed FTC strategy. A T-S fuzzy model with premise
variable depend on unmeasurable state variables is used
to design the observer and the controller. The tuning
parameters used in the MPC are given in Table 1.

Table 1. Controller tuning parameters

Sample time Te 0.5 s
Prediction horizon Hp 8 Te

Control horizon Hu 6 Te
Input constraints −25 6 uk 6 25

Output constraints −6 6 yk 6 6 , ∀k > 0
Input weights R 0.1

Output weights Q 1

Two scenario faults (actuator and sensor) are given by (a)

in Fig.2 and (a) in Fig.4, with ḟ(t) = 0:

f(t) =
{

f1(t), 25 ≤ t < 40
f1(t) + f2(t), t ≥ 40

Solutions satisfying stability conditions under LMIs in
Theorem 2. are found with the attenuation rate value:
γ = 0.9417. Solving the optimization problem results in
the following matrices:

X1 =
[

0.3073 0
0 0.6144

]
, P2 =

[
0.8973 0.2107
0.2107 0.9286

]
The LMIs given by (14) are solved with the YALMIP
toolbox (Lofberg, 2004) and the semidefinite programming
SeDuMi-Solver. The SeDuMi interface was developed at
the Laboratory of Architecture and Analysis of Systems
(LAAS) by D. Peaucelle et al. The designed controller and
observer gains are:

K1
x = K2

x =
[

0.0096 0.6146
]
, L1 =

[
1.8528
−10.5144

]
,

L2 =

[
0.6584
1.9390

]
, G1 =

[
5.3346

0

]
and G2 =

[
4.9879

0

]
The top of Fig.2 and Fig.4 show that actuator and sensor
faults are estimated with a high accuracy. From (b) in
Fig.2 and (b) in Fig.4, it is observed that the nominal
control law obtained using the FTC strategy is equal to
uf (t) before the occurrence of faults. Figures 3 and 5
illustrate the state estimation errors together with the
state tracking errors. From (f) in Fig.5, it is shown how

µ1(θ̂) increases when the fault occurs. From the simulation
results, it is concluded that the performances of the FMPC
strategy are very satisfactory and allow normal functioning
of the system even in the occurrence of actuator sensor
faults.
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Fig. 2. Fault with its estimate (a), FMPC (b) and output
system (c) signals vs.time in the actuator faulty case
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Fig. 3. State estimation errors (d) and state tracking errors
(e) signals vs.time in the actuator faulty case
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Fig. 4. Fault with its estimate (a), FMPC (b) and output
system (c) signals vs.time in the sensor faulty case
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Fig. 5. state estimation errors (d), state tracking errors (e)
signals in the sensor faulty case and variation of the
activation functions according to the UPV vs.time

5. CONCLUSION

The main contribution of this paper is the development of
a new FTC strategy for a class of nonlinear systems. A
T-S fuzzy observer is designed for the proposed strategy,
to estimate unmeasurable states and faults. The proposed
controller accommodates faults properly and ensures the
stability convergence of the closed-loop system. Thus the
FMPC maintained good tracking performances. The oc-
currence of faults did not cause infeasibility problems,
instability and constraints dissatisfaction. New sufficient
conditions for the existence of the robust FTC are devel-
oped in terms of LMI constraints. The proposed FMPC
with integral action is shown to be able of providing an
optimal control law in the nominal and faulty operation.
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Appendix A. PROOF

Lemma 3. Let us consider two matrices X and Y of ap-
propriate dimensions. The following inequality is verified
for each matrix Q:

XTY +XY T ≤ XTQ−1X + Y QY T

Lemma 4. (Schur complement) The following two inequal-
ities are equivalent:

1.

[
Q S
ST R

]
> 0 where Q = QT and R = RT

2. R > 0, Q− SR−1ST > 0.

The proof of the Theorem 2. is established using the
following Lyapunov’s function:

V (ẽ(t)) = ẽ(t)TP ẽ(t), P = PT > 0 (A.1)

where the matrix P is defined as follows:(
P1 0 0
0 P2 0
0 0 P3

)
The derivative of V (ẽ(t)) is written as:

V̇ (ẽ(t)) =

N∑
i=1

N∑
j=1

µi(θ̂f )µj(θf )
(
ẽ(t)T Υij ẽ(t)

)
(A.2)

with

Υij = Λ

((
P1Ai − P1BiK

j
x −P1BiK

j
x −P1E

i
a

0 P2Ai − P2LiCj P2E
i
a − P2LiE

j
s

0 −P3GiCj −P3GiE
j
s

))
where Λ(X) denote the Hermitian of the matrix X:

Λ(X) = XT +X

The derivative of the Lyapunov function is negative if the
following inequality is satisfied

Υij < 0, i, j = 1, . . . , N (A.3)

using the lemma of congruence as follows:

Υij < 0⇔

(
P−1

1 0 0
0 I 0
0 0 I

)
Υij

(
P−1

1 0 0
0 I 0
0 0 I

)
(A.4)

The following inequality is obtained: ξ1
ij −BiK

j
x −Ei

a

∗ ξ2
ij P2E

i
a − P2LiE

j
s − CT

j G
T
i P3

∗ ∗ −P3GiE
j
s − Ej

s
T
GT

i P3

 < 0 (A.5)

where:

ξ1
ij = AiX1 +X1AT

i −BiK
j
xX1−X1Kj

x
T
BT

i

ξ2
ij = P2Ai +AT

i P2 − L̄iCj − CT
j L̄

T
i

with X1 = P−1
1 . The inequality (A.5) can be written as: AiX1 +X1AT

i −BiK
j
x −Ei

a

∗ ξ2
ij P2E

i
a − P2LiE

j
s − CT

j G
T
i P3

∗ ∗ −P3GiE
j
s − Ej

s
T
GT

i P3


+

(
−BiK

j
x

0
0

)(
X1
0
0

)T

+

(
X1
0
0

)(
−BiK

j
x

0
0

)T

< 0

(A.6)

Using the Lemma 3., the inequality (A.6) becomes: AiX1 +X1AT
i −BiK

j
x −Ei

a

∗ ξ2
ij P2E

i
a − P2LiE

j
s − CT

j G
T
i P3

∗ ∗ −P3GiE
j
s − Ej

s
T
GT

i P3

+

(
−BiK

j
x

0
0

)
Θ−1

(
−BiK

j
x

0
0

)T

+

(
X1
0
0

)
Θ

(
X1
0
0

)T

< 0

(A.7)

where Θ is a symmetric definite positive matrix. Using
the Lemma 4., we obtain the LMIs of Theorem 2., with
L̄i = P2Li, Ḡi = P3Gi and Θ = I.
The objective is to minimize the L2-gain of the perturba-
tion transfer from ∆(t) to the errors ẽ(t), this is formulated
by:

‖ẽ(t)‖2
‖∆(t)‖2

< γ, ‖∆(t)‖2 6= 0 (A.8)

Then, the problem can be formulated as follows:

V̇ (ẽ(t)) + ẽ(t)T ẽ(t)− γ∆(t)T ∆(t) < 0 (A.9)
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