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Abstract: In this paper, an adaptive super-twisting control for driving angular position of a
servomotor system with backlash dynamic is proposed. In order to implement the proposed
controller, information about angular velocity is estimated by means of a robust differentiator.
In spite of being based on a simplified model of the system, the proposed scheme increases
robustness against unmodeled dynamics as backlash, as not all the parameters of the system
nor the bounds of the perturbations are required to be known. Experimental results considering
a wide backlash angle near to 2π, illustrate the feasibility and performance of the proposed
control methodology.
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1. INTRODUCTION

Backlash can be defined as the play between adjacent
movable parts, which is present in many mechanical sys-
tems, typically those with gears, e.g. the drive train in
cars, rolling mills, printing presses and industrial robots.
Backlash or backlash-like characteristic, is also common in
control systems such as servomechanisms, electronic relay
circuits and electromagnetic devices with hysteresis.

Control of systems with backlash nonlinearity is an impor-
tant and challenging area of control system research. It im-
poses serious limits to performance, rendering inaccuracies
in the position and velocity of a machine and undesirable
delays and oscillations, which can even lead to instability.

With respect to backlash in servomechanisms, the motor
losses contact with the load for a time instant. This may
happen when a disturbance acts on the load, or when the
motor applies a corrective action in the opposite sense
regarding the load position. Furthermore, at time that
backslash gaps open, the movement of the load is free.
Therefore, the torque generated by the motor does not
acts over the load.

In order to tackle this control problem, several approaches
have been designed. For instance, a survey of this prob-
lem, including classical PI, linear controllers, non-linear
and adaptive control approaches, is presented in (Nor-
dina and Gutman, 2002). Despite basic backslash models
were incorporated in order to improve the performance,
the backslash nonlinearity is not completely compensated.
Moreover, the control design requires an important ana-
lytical effort.

A different approach is the use of neural networks and
fuzzy logic, as developed in (Guo et al., 2009) and (Su
et al., 2003); where a feedback control is designed and
compensated by means of approximations of backslash
given by neural networks or fuzzy logic. However, this
approach demands intensive calculations.

On the other hand, a smooth inverse of backlash was
developed to compensate the nonlinearity through a back-
stepping approach in (Zhou et al., 2007), where the deriva-
tion of the control input was used to get the controller.
Nonetheless, this is not always possible.

More recently, in (Guo et al., 2004) an adaptive robust
control for nonlinear system with unknown input backlash
is presented. Nevertheless, this methodology is based in a
linear model of the backslash. Moreover, in (Dong and
Mo, 2013), an adaptive PID controller is designed for a
motor system with backlash which eliminates the vibration
caused by the backslash. However, this work is based on
the backlash model and analyses the system properties
according to engineering experience.

Sliding mode control is used in many applications; in
nonlinear plants, it enables high gain accuracy tracking
and insensitivity to disturbances and plant parameter
variations. The main drawback of sliding mode techniques
is the chattering effect, which can damage the actuator
due to the high frequency commutation. A sliding mode
controller is the super-twisting control algorithm, this
controller is designed to converge in a finite-time and
ensures the robustness of the system under uncertainties.
However, this controller needs to know the bounds of
uncertainties and perturbations present on the system. On
the other hand, Adaptive Super Twisting approach (see
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Shtessel et al. (2012)) represents an alternative to cope
with uncertainties as it is not necessary to know their
bounds.

While in the literature, to the best of the authors knowl-
edge, it is considered a narrow backlash angle (Nordina
and Gutman, 2002; Merzouki et al., 2007); in this work,
a backlash angle near to 2π will be considered, i.e. a one
tooth gear mechanism.

This paper addresses the angular position control of a DC
Servomotor System with Backlash Nonlinearity. With the
aim of solving the control problem, an Adaptive Super
Twisting Control Algorithm is proposed. Furthermore,
in order to implement the proposed controller, necessary
information about angular velocity is estimated through
a Robust Differentiator. Due to its robustness properties,
the proposed control scheme is able enough to compen-
sate parametric uncertainties and unmodeled dynamics as
backlash. Experimental results illustrate the performance
of the proposed scheme.

The layout of this paper is as follows: Section 2 deals with
the problem statement and a system description. In section
3, an Adaptive Super Twisting Controller is derived with
the aim of providing robustness under parametric uncer-
tainties and unmodeled dynamics. Furthermore, in order
to implement the proposed controller, angular speed is
estimated by a Robust Differentiator presented in section
4. Experimental results given in section 5 illustrate the
effectiveness of the proposed scheme. Finally, conclusions
are drawn.

2. SYSTEM DESCRIPTION

In this paper, a DC servo motor system with a couple
of gears with backlash is considered. A schematic view of
this system can be seen in the Figure 1. Electrical and
mechanical dynamics of a DC motor can be described by
following equations

di

dt
=

1

L

(
−Ri+ V −Ke

dθ

dt

)
, (1)

dω

dt
=

1

J

(
Kmi−B

dθ

dt

)
, (2)

where i represent motor current and V the input voltage.
θ and ω, denotes the angular position and speed of the
rotor. Ke denotes the back electromechanical torque. L
correspond to motor armature inductance, B stands for
viscous friction and R the resistance of armature winding,
while J represent the inertia moment of the moving parts.
Km describes the coefficient of electromechanical torque.
Since L << R, the motor inductance can be neglected.

Thus equations (1) and (2) can be written in state space
form as follows

ẋ1 = x2

ẋ2 = f(x)x2 + g(x)u+∆(x, u, t),

f(x) = −
BR+KeKm

RJ
< 0 , g(x) =

Km

RJ
> 0

(3)

Fig. 1. Electromechanical system diagram.

where x = (x1, x2)
T correspond to (θ, θ̇)T , respectively.

u denotes the motor input voltage. ∆(x, u, t) represent
the unmodeled dynamics including external disturbance
lumped together.

3. ADAPTIVE SUPER-TWISTING ALGORITHM

In this section, the synthesis of a control law to track a
desired angular reference (θd), is addressed. The proposed
controller is based on an adaptive super-twisting control
algorithm, which has been presented in (Shtessel et al.,
2012). The main advantage of such algorithm is that,
it combines the advantage of chattering reduction and
the robustness of high order sliding mode approach. The
controller designed ensure its convergence in a finite-time
and the robustness of the system under disturbances,
where the bounds of the disturbances are not required to
be known.

Now, consider the super-twisting control algorithm (see
Levant (2003)), which is given by

u=−K1|s|
1/2sign(s) + υ,

υ̇ =−K2sign(s), (4)

where u represents the control signal, K1,K2 are the
control gains and s is a sliding variable.

According to adaptive super twisting algorithm (ASTA)
approach, the gains K1 and K2 are chosen such that they
are functions of the sliding surface dynamics as follows

K1 = K1(t, s, ṡ), K2 = K2(t, s, ṡ). (5)

Then, in order to design an adaptive super-twisting control
for the uncertain nonlinear system

ẋ = f(x, t) + g(x, t)u, (6)

where x ∈ �n is the state, u ∈ � the control input,
f(x, t) ∈ �n is a continuous function.

With the objective to satisfy the control purposes, we
introduce the following assumptions

Assumption A1. The sliding variable s = s(x, t) ∈ � is
designed so that the desired compensated dynamics of the
system (6) are achieved in the sliding mode s = s(x, t) = 0.

Assumption A2. The relative degree of the system (6)
is equal to 1 with respect to the sliding variable s, and the
internal dynamics of s are stable.

Then, the dynamics of the sliding variable s are given by

ṡ = a(x, t) + b(x, t)u. (7)
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where a(x, t) = ∂s
∂t +

∂s
∂xf(x, t) and b(x, t) = ∂s

∂xg(x).

Assumption A3. The function b(x, t) ∈ � is unknown
and different from zero ∀x and t ∈ [0,∞). Furthermore,
b(x, t) = b0(x, t) + ∆b(x, t), where b0(x, t) is the nominal
part of b(x, t) which is known, and there exists γ1 an
unknown positive constant such that ∆b(x, t) satisfies∣∣∣∣∆b(x, t)

b0(x, t)

∣∣∣∣ ≤ γ1.

Assumption A4. There exist δ1, δ2 unknown positive
constants such that the function a(x, t) and its derivative
are bounded

|a(x, t)| ≤ δ1|s|
1/2, |ȧ(x, t)| ≤ δ2. (8)

The objective of ASTA approach is to design a continuous
control without overestimating the gain, to drive the
sliding variable s and its derivative ṡ to zero in finite time,
under bounded additive and multiplicative disturbances
with unknown bounds γ1, δ1 and δ2.

Then, the closed loop system (7) becomes

ṡ= a(x, t)−K1b(x, t)|s|
1/2sign(s) + b(x, t)υ,

υ̇ =−K2sign(s), (9)

Now, consider the following change of variable

ς = (ς1, ς2)
T = (|s|

1/2
sign(s), b(x, t)υ + a(x, t))T . (10)

Then, the system (9) can be written as

ς̇ = A(ς1)ς + g(ς1)�̄(x, t), (11)

where

A(ς1) =
1

2 |ς1|

(
−2b(x, t)K1 1
−2b(x, t)K2 0

)
, g(ς1) =

(
0
1

)
.

and �̄(x, t) = ḃ(x, t)υ + ȧ(x, t) = 2�(x, t) ς1
|ς1|

.

To prove the closed loop stability of the system the
following assumption is given

Assumption A5. ḃ(x, t)υ is bounded with unknown

boundary δ3, i.e. | ḃ(x, t)υ |< δ3.

Then, system (11) can be rewritten as follows

ς̇ = Ā(ς1)ς Ā(ς1) =
1

2 |ς1|

(
−2b(x, t)K1 1

−2b(x, t)K2 + 2�(x, t) 0

)
,

(12)

where |ς1| = |s|
1

2 , it is appealing to consider the quadratic
function

V0 = ςTPς, (13)

where P is a constant, symmetric and positive matrix, as
a strict Lyapunov candidate function for (4). Taking its
derivative along the trajectories of (12), we have

V̇0 = − |s|
− 1

2 ςTQς, (14)

almost everywhere, where P and Q are related by the
Algebraic Lyapunov Equation

ĀTP+PĀ = −Q. (15)

Since Ā is Hurwitz if b(x, t)K1 > 0, 2b(x, t)K2 + 2�(x, t) >
0, for every Q = QT > 0, there exist a unique solution
P = PT > 0 for (15), so that V0 is a strict Lyapunov
function.

Remark 1. The stability of the equilibrium ς = 0 of (12)
is completely determined by the stability of the matrix Ā.
However, classical versions of Lyapunov ’s theorem (Fil-
ippov, 1988) cannot be used since they require a continu-
ously differentiable, or at least locally Lipschitz continuous
Lyapunov function, though V0 (13) is continuous but not
locally Lipschitz. Nonetheless, as it is explained in Theo-
rem 1 in (Moreno and Osorio, 2012), it is possible to show
the convergence properties by means of Zubov ’s theorem
(Pozniak, 2008), that requires only continuous Lyapunov
functions. This argument is valid in all the proofs of the
present paper, so that no further discussion of these issues
will be required.

From Assumption A4 and A5, it follows that

0 < �(x, t) < δ2 + δ3 = δ4.

Notice that, while ς1 and ς2 converge to 0 in finite time, it
follows that s and ṡ converge to 0 in finite time, too.

The control design based on ASTA approach is formulated
in the following theorem.

Theorem 1. (Shtessel et al., 2012) Consider the system
(6) in closed-loop with the control (4), expressed in terms
of the sliding variable dynamics (7). Furthermore, the
assumptions A1−A5 for unknown gains γ1, δ1, δ2 > 0 are
satisfied. Then, for given initial conditions x(0) and s(0),
there exists a finite time tF > 0 and a parameter ι, as soon
as the condition

K1 >
(λ+ 4ε∗)

2 + 4δ24 + 4δ4(λ− 4ε2∗)

16ε∗λ
,

holds, if |s(0)| > ι, so that a real 2-sliding mode, i.e.
|s| ≤ η1 and |ṡ| ≤ η2, is established ∀t ≥ tF , under the
action of Adaptive Super-Twisting Control Algorithm (4)
with the adaptive gains

K̇1 =


 ω1

√
γ1

2
sign(|s| − ι), if K1 > K∗,

K∗, if K1 ≤ K∗,
K2 = 2ε∗K1,

(16)

where ε∗, λ, γ1, ω1, ι are arbitrary positive constants, K∗ a
small positive value, η1 ≥ ι and η2 > 0. �

Notice that, according to system (3), the sliding surface
for the control (4)-(5) is defined as

s =
(
x2 − θ̇d(t)

)
+ λ1 (x1 − θd(t)) , (17)

whose time derivatives are given by

ṡ = ẋ2 − θ̈d(t) + λ1

(
x2 − θ̇d(t)

)
+ b1v1 = a1 + b1v1 (18)

where θd(t) denotes the desired angular trajectory, v1 the
control inputs defined according to (4)-(16).

However, to implement the proposed controller, it is nec-
essary to know the values of (x1, x2). Then, to overcome
this difficulty, the estimation of unmeasurable terms will
be addressed in next section.
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4. HIGH-ORDER SLIDING MODE
DIFFERENTIATOR

In this section, some results are introduced in order to
build a differentiator for computing the real-time deriva-
tive of output function with finite-time convergence.

Let f(t) ∈ [0,∞), consisting of a bounded Lebesgue-
measurable noise with unknown features and f0(t) an
unknown basic signal, whose k-th derivative has a known
Lipschitz constant L̃ > 0. Thus, the problem of finding

real-time robust estimations of f
(i)
0 (t), for i = 0, ..., k;

being exact in the absence of measurement noises, is known
to be solved by the robust exact differentiator (see Levant
(2003) for more details.), which is given by

ż0 = ν0

ν0 =−λkL̃
1

k |z0 − f(t)|
k−1

k sign (z0 − f(t)) + z1

...

żj = νj

νj =−λk−jL̃
1

k−j |zj − νj−1|
k−j−1

k−j sign (zj − νj−1)

+zj+1

żk−1 =−λ1L̃sign (zk−1 − νk−2) , (19)

for j=0,...,k-2; where z0, z1, ..., zj are estimates of the
j-th derivatives of f(t). In order to assure the initial
differentiator convergence, one can take a voluntarily large
constant parameter L̃0 and switch it to the given variable
value L̃ after the convergence (Levant and Livne, 2012).

Then, according to (19), the homogeneous differentiator
for (3) is given by

O :




ż0 = −λ3L̃
1

3 |z0 − σ|
2

3 sign (z0 − σ) + z1

ż1 = −λ2L̃
1

2 |z1 − ν0|
1

2 sign (z1 − ν0) + z2
ż2 = −λ1L̃sign (z2 − ν1) ,

(20)

where σ is the output measurable, ê(t) = x − z is the
estimation error and Z = (z0, z1)

T , is the estimated state
vector.

Consider the system (3) in closed-loop with the adaptive
super-twisting controller (4)-(5), using the estimates ob-
tained by the differentiator (19). Then, the trajectories
of the system (3) converge in finite-time to the reference
signal θd(t).

Remark 2: Since the observer converges in finite-time,
the control law and the observer can be designed sep-
arately, i.e., the separation principle is satisfied. Thus,
if the controller is known to stabilize the process then
the stabilization of the system in closed-loop is assured
whenever the differentiator dynamics are fast enough to
provide an exact calculation of the modes s, ṡ.

Thus, a general control scheme is given in the Figure 2.

5. EXPERIMENTAL RESULTS

In this section, experimental results carried out on the
Modular Servo System (MSS) platform (see Figure 3)

Fig. 2. Proposed control scheme.

are provided to illustrate the feasibility of the proposed
methodology. The MSS experimental platform consist of

Fig. 3. Experimental setup.

a DC motor with several modules, arranged in a chain,
mounted on a metal rail and coupled with small clutches.
Modules as backlash and inertia load are attached to the
chain (see Figure 3). The measurement system is based
on RTDAC/PCI acquisition board equipped with A/D
converters. The angle of the load is measured using an
incremental encoder and thus the system has no inner
feedback for dead zone compensation. The accuracy of
angle measurement is 0.1%. Angular velocity of the DC
motor is measured through a tachogenerator. The control
signal is normalized to ±1, corresponding to ±12V (see
Anon1 (2006) for further information).

On the other hand, controller and observer algorithms
were developed in the MATLAB/Simulink environment,
while the associated executable code was automatically
generated by the RTW/RTWI rapid prototyping environ-
ment, with a sampling time of 0.4kHz using Euler solver.

Parameters of the DC motor can be seen in the Table
1. Additionally, controller and observer parameters are
displayed in the Table 2. Furthermore, in order to provide
a comparative study, a PID controller and the Super
Twisting Algorithm (STA, see Levant (2003)) were also
considered. The experiment, which consist in two cases,
will be described in sequel.
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Parameter Value Unit

Rated voltage V [−24, 24] Volts
Rated current i 3.1 Ampere
Armature resistance R 2 Ohm
Rotor inertia J 63.41 oz-in2

Torque back emf Ke 1 ms
Electromechanical torque constant Km 13 ms

Table 1. DC Servomotor parameters.

ω1 λ ι γ ε∗ λ1 λ2 λ3 L̃

0.1 0.3 0.1 0.1 0.01 10.5 10 0.02 100

Table 2. Controller and differentiator gains.

5.1 E1. Nominal case.

The control task consists in tracking a square signal of
amplitude 40 rad and frequency of 0.1Hz. The angular
response can be seen in the Figure 4, as can be seen,
controllers have similar responses.

On the other hand, in the Figure 5 the corresponding
control signals are shown. Additionally, in the Figure 8
adaptation of ASTA gains is presented.
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Fig. 4. E1. Servo nominal response.
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Fig. 5. E1. Control signal: (top) STA, (center) PID,
(bottom) ASTA.

Moreover, in the Table 3, Mean Square Error (MSE),
Integral Time Absolute Error (ITAE), Norm of the Error
(‖e‖) and Norm of the Control Signal (‖u‖) illustrate the
performance of the controllers. As can be seen, ASTA
controller requires less control effort.

Control MSE ITAE ‖e‖
2

‖u‖
2

STA 1528.94 3.52×106 3029.05 40.96
PID 1526.60 3.51×106 3026.74 39.23
ASTA 1527.52 3.51×106 3027.65 30.31

Table 3. Performance for nominal case.

5.2 E2. Backlash case.

With the aim of testing the robustness of the proposed
controller, a backlash module has been attached between
the servo and the inertia load in the experimental plat-
form.

Angular profiles for the second test are shown in the
Figure 6, where it can be observed that the proposed
controller shows a better response, while for PID and STA
controls oscillations are present. Moreover, control signals
are shown in the Figure 7. Behaviour of adaptive gains

0 10 20 30 40 50 60 70 80 90 100
−60

−40

−20

0

20

40

60

an
gl

e 
(d

eg
)

time (s)

Reference
STA
PID
ASTA

(a) Angle complete view.
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(b) Angle zoomed view.

Fig. 6. E2. Servo backlash response.
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Fig. 7. E2. Control signal: (top) STA, (center) PID,
(bottom) ASTA.
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Fig. 8. Adaptive gains. (top) E1. Nominal case. (bottom)
E2. Backlash case.

is shown in the Figure 8. Furthermore, in the Table 4 the
performance of the controllers according to several indexes
for backlash case is illustrated. From the indexes it can be
observed, the proposed controller held the best tracking
performance and required less control effort among the
tested controls.

Control MSE ITAE ‖e‖
2

‖u‖
2

STA 991.54 1.58×107 4453.29 85.12
PID 985.90 1.78×107 4440.62 97.06
ASTA 958.94 1.54×107 4379.48 66.91

Table 4. Performance for backlash case.

6. CONCLUSIONS

An adaptive super-twisting control for driving the angu-
lar position of a direct current servomotor system with
backslash nonlinearity has been designed. With the pur-
pose of implementing the proposed controller, a robust
differentiator was designed for estimating angular velocity.
The proposed control scheme has been compared against
a PID and the Super Twisting Algorithm, demonstrating
its advantages for dealing with hard nonlinear dynamics as
backlash. Furthermore, among the tested controllers, the
proposed scheme required less control effort and held the
best tracking performance. Experimental results demon-
strated the robustness and efficiency of the proposed con-
trol methodology.

ACKNOWLEDGEMENTS

This work was partially supported by the Mexican
CONACYT (Ciencia Basica) under grant no. 105799 and
PAICYT-Universidad Autonoma de Nuevo Leon.

REFERENCES

Anon1 (2006). Modular Servo System. User’s man-
ual. Inteco Ltd, Poland, 1st edition. See also URL
http://www.inteco.com.pl.

Dong, J. and Mo, B. (2013). The adaptive pid controller
design for motor control system with backlash. In
Fourth International Conference on Intelligent Control
and Information Processing, 59–63. Beijing.

Filippov, A. (1988). Differential equation with discontin-
uos right-hand side. Kluwer, Netherlands.

Guo, J., Yao, B., Chen, Q., and Wu, X. (2004). High
performance adaptive robust control for nonlinear sys-
tem with unknown input backlash. In Proc. of joint
48th IEEE Conference on Decision and Control and
28th Chinese Control Conference Shanghai, 1758–1763.
China.

Guo, J., Yao, B., Chen, Q., and Wu, X. (2009). Friction
and output backlash compensation of systems using
neural network and fuzzy logic. In Proc. of American
Control Conference, 7675–7679. Shanghai.

Levant, A. (2003). High-order sliding modes, differentia-
tion and output-feedback control. International Journal
of Control, 76(9), 924–941.

Levant, A. and Livne, M. (2012). Exact differentiation
of signals with unbounded higher derivatives. IEEE
Transactions on Automatic Control, 57(4), 1076–1080.

Merzouki, R., Davila, J., Fridman, L., and Cadiou, J.
(2007). Backlash phenomenon observation and identifi-
cation in electromechamical system. Control Engineer-
ing Practice, 15(4), 447–457.

Moreno, J. and Osorio, M. (2012). Strict lyapunov func-
tions for the super-twisting algorithm. IEEE Transac-
tions on Automatic Control, 57(4), 1035–1040.

Nordina, M. and Gutman, P. (2002). Controlling mechani-
cal systems with backlash a survey. Automatica, 38(10),
1633–1649.

Pozniak, A. (2008). Advanced Mathematical Tools for
Automatic Control Engineers. Elsevier, Deterministic
Techniques, Amsterdam, The Netherlands.

Shtessel, Y., Taleb, M., and Plestan, F. (2012). A novel
adaptive-gain supertwisting sliding mode controller:
methodology and application. Automatica, 48(5), 759–
769.

Su, C., Oya, M., and Hong, H. (2003). Stable adaptive
fuzzy control of nonlinear systems preceded by unknown
backlash-like hysteresis. IEEE Transactions on Fuzzy
Systems, 11(1), 1–8.

Zhou, J., Zhang, C., and Wen, C. (2007). Robust adap-
tive output control of uncertain nonlinear plants with
unknown backlash nonlinearity. IEEE Transactions on
Automatic Control, 52(3), 503–509.

CLCA 2014
Octubre 14-17, 2014. Cancún, Quintana Roo, México

557


