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Abstract. We define Qualitative Behavior Control (QBC) problem and re-

duce to this problem classical problems of synthesis of dynamical regimes of a

given nature (like, for example, stable equilibrium or stable periodical motion)
and bifurcations of such regimes depending on parameters (like Andronov-

Hopf bifurcation). QBC problem consists of finding a feedback such that the

phase portrait of the closed system is equivalent to the phase portrait of a
given Model (M) system of differential equations. The equivalence means that

there exists a mapping x = F (z) of the states z of M-system to the states x of

closed loop control system which maps trajectory of the first system to the tra-
jectory of the second system. Maltivaluable mappings in the form of inexplicit

relations Φ(x, z) = 0 (compare with explicit relations x − F (z) = 0) also are

allowed. Note that by definitions Φ(x(t), y(t)) = 0 for any pare of trajectories
x(t), y(t) if Φ(x(0), y(0)) = 0. That’s why the relations Φ(x, z) = 0 are called

homeostatic relations (or homeostasis) for closed loop control and M systems.
Control problem which consists of finding a control allowing a homeostasis of

the above mentioned systems is called problem of homeostasis (or H-problem).

We argue that QBC problem is one of universal problems of systems theory
together with H-problem and optimization problem. Because of the univer-

sality each of them can be reformulated in terms of other two. This is an

important heuristic principle. It appears that reformulation of QBC prob-
lem in terms of homeostasis problem allows to solve problems of synthesis of

dynamical regimes of a given nature even in a vicinity of states where the

linearization of controlled system is not completely controllable. Namely, join
M-system and controlled systems z = w(z) and x = v(x, u) by means of some

u(z). Then under proper assumptions systems w, v will have a homeostasis

Φ(x, z) = 0. Now one can synthesise a feedback ũ(x) = u(z(x)) which solve
OBC problem. Here z(x) is a solution of the equations Φ(x, z) = 0. This
solution will have branches (i.e., will be manivalued) in a vicinity of states x
at which the linearization of control system v is not completely controllable.
Then u(z(x)) will also have branches. We describe the process of branch selec-

tion to finish the synthesis of the feedback. Similar constructions are described
for nonlinear observer in a vicinity of not completely observable state.
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