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Abstract— A family of continuous output feedback synthesis
is analyzed using strict non smooth Lyapunov functions, such
that compensation of growing perturbations together with
state variables is shown. Indeed, from twisting algorithm to pd
control law, a general continuous family of control algorithms
are considered. A strict non-smooth Lyapunov function is
proposed allowing to create tuning rules for the gains of a
family of controllers such that global finite time stability of
the origin is shown. The proposed methodology estimate an
upper bound for convergence time of the closed loop system
spite of growing perturbation with respect to the state. To
illustrate performance and robustness properties a numerical
experiment is presented, using one-link pendulum as a test
bed.
Keywords: Second-order sliding modes; Lyapunov fun-
ction; Stability analysis.

I. INTRODUCTION

Second order sliding mode algorithms (SOSM) have
become very popular, particularly with electromechanical
systems, due to their finite-time convergence to the origin
in the presence of bounded, persisting external disturbances
and parametric uncertainties (Orlov et al., 2011), added
to these properties, some particular versions of SOSM
algorithms, like the twisting algorithm, have the advantage
of considering the Coulomb friction as part of the controller
(see (Emelyanov et al., 1986)). However, the “chattering”
phenomenon is always present in SOSM algorithms,
turning into one of the principal problems of sliding mode
control techniques.

Several works on the literature have been devoted to
modify SOSM algorithms to reduce chattering during
last years (see (Orlov et al., 2003), (Orlov, 2009) and
references therein). An example of them is (Orlov et
al., 2011), where a smooth version of twisting algorithm
has been developed applying the invariance principle to
prove global asymptotic stability of the perturbed double
integrator in spite of external growing perturbations. The
authors design a family of controllers, nevertheless, they
use a weak Lyapunov function design, and the upper bound
for the growing perturbation is with respect to one state
variable only. In (Santiesteban et al., 2010), a strict non

smooth Lyapunov function is proposed using a twisting
algorithm, and the stability of the closed loop of a general
mechanical system is shown. The strictness of this function
allows to estimate the convergence time of the closed
loop system to the origin, and therefore a deeply study
of the robustness of the algorithm is allowed. Moreover,
(Santiesteban, 2013) developed a strict Lyapunov function
using the family of controllers of (Orlov et al., 2011) as
an extension of their gain restrictions. Note that in this
work the upper bound of the growing perturbation is with
respect to both state variables.

In this paper, a new strict Lyapunov function is proposed
for perturbed systems, which results in the improvement
of the convergence time estimation and an easier
methodology to compute the gain constraints, compared
with (Santiesteban, 2013). A continuous stabilizing
feedback controller is designed to show the results using
a one-link pendulum affected by Coulomb friction and
growing perturbations with respect to the state as a test bed.

The structure of the paper is as follows: basic assum-
ptions of the systems under interest and some mathematical
background are given in Section II. The proposed Theorem
to stabilize perturbed systems is developed in Section III.
In section IV to support theoretical results, a numerical
example is shown and in section V are the conclusions of
this work.

II. PRELIMINARIES

This section states definitions and the mathematical
background, as well as the class of systems considered
throughout the paper.

II-A. Considered systems

The general model of second-order mechanical systems
will be considered. It is described by equations of the form

ẋ = y

ẏ = f(x, y) + g(x, y)τ + δ(t, x, y) (1)
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with the smooth function g(x, y) 6= 0. The origin of
(1) is an equilibrium point and x and y ∈ IR are
scalar state variables. The function f(x, y) represents
the nominal known part of the system dynamics, it can
be discontinuous, and δ(t, x, y) the uncertainties such as
growing perturbations with respect to the state variables
(see (Orlov et al., 2011)).

Since the right hand side of the equation (1) has
discontinuous terms, their solutions are understood in
the Filippov sense (see (Filippov, 1988)). It is assumed
that the full vector state of the dynamic system (1) is
available for measurement, note that this assumption is not
restrictive because there are several works in the literature
about observers and differentiators design (see (Angulo et
al., 2013), (Moreno, 2013), (Orlov et al., 2011), (Dávila et
al., 2005) and references therein).

For system (1) the following controller design is proposed

τ =
1

g(x, y)
(U − f(x, y)) (2)

where U ∈ IR is a new control input given by

U = −k1|x|
α

2−α sgn(x)− k2|y|αsgn(y) (3)

with k1, k2 are positive constants and 0 ≤ α ≤ 1.
Let consider an external bounded perturbation δ(x, y)

given by

|δ(x, y)| ≤ µy|y|α + µx|x|
α

2−α , (4)

where µy, µx ∈ IR are positive constants and α is defined
as 3. Therefore system 1 is

ẋ = y

ẏ = U + δ(x, y) (5)

Previous results for the considered systems defined above
are shown in the following sections.

II-B. Mathematical background

A main contribution in (Santiesteban, 2013) is reported
here by the following definitions and theorems. The
notation of some theorems was modified for readability.

Let consider the positive definite Lyapunov function

V (x, y) =
2− α
2

k21|x|
4

2−α + k1|x|
2

2−α y2

+ |x|
3

2−α sgn(x)y +
1

2(2− α)
y4. (6)

Note that (6) is continuous everywhere but not
differentiable for x = 0. Since (6) is a strict Lyapunov
function of system (1-3), then finite time stability can be
concluded (see (Bacciotti and Rosier, 2001)).

Theorem 1: (Santiesteban, 2013) Unperturbed System
(5) has finite time convergence to the point (x, y) = (0, 0)
with

treach ≤
1

ζmin
γ

3+α
4

maxV
1−α
4 (x(0), y(0)) (7)

as an estimation of the convergence time, with V (x, y)
defined as (6),

ζmin = min
{
k1k2 −

α

1 + α
, k1 −

1

1 + α
k2,

k1k2 − 3(1 + α)

2(2− α)
, k2 −

3

4
(1− α)

}
(8)

and

γmax = max
{
λmax

([
2−α
2 k21

1
2

1
2 k1

])
,

1

2(2− α)

}
(9)

if

k1 >
1

1 + α
max {α, k2}

k2 >
3

4
(1− α) (10)

k1k2 >

(
3

2

)
1 + α

2− α

for 0 ≤ α < 1 and asymptotic stability for α = 1.
Remark 1: Note that the analyzed controllers in equation

(3) are a continuous family of control algorithms that
contain from twisting algorithm to pd control law acting
in the closed-loop system (5). Considering α = 0, the
algorithm (3) is known as twisting algorithm, a well-known
controller and considering α = 1 it is not difficult to show
that the algorithm (3) is known as PD control law, another
well-known controller.

Now, consider a positive definite Lyapunov function of
the form

V (x, y) =
2− α
2

k1 (k1 − µxsgn(x)) |x|
4

2−α

+ k1|x|
2

2−α y2 + |x|
3

2−α sgn(x)y +
1

2(2− α)
y4

(11)

This function is continuous everywhere but not
differentiable on x = 0.

Theorem 2: (Santiesteban, 2013) System (5) has finite
time convergence to the point (x, y) = (0, 0) with

treach ≤
1

ζminp
γ

3+α
4

maxV
1−α
4 (x(0), y(0)) (12)

as an estimation of the convergence time with V (x, y)
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defined as (11),

ζminp = min

{
k1 (k2 − µy)−

6

(1 + α)(2− α)
,

k2 − µy, k2 − µy −
3

2(1 + α)
,

k2 − µy −
6

3 + α
,

k1
2
− 4

α

(3 + α)(2− α)
µx, k1 −

α

1 + α
µx,

1

2
(k1 − µx)−

1

1 + α
(k2 − µy)

}
(13)

and

γmax = max

{
λmax (P1) ,

1

2(2− α)

}
, (14)

with P1 =

[
2−α
2 k1 (k1 − µxsgn(x)) 1

2
1
2

2−α
2 k1

]
.

Notice that λmax(P1) denotes the largest eigenvalue of
matrix P1.

if

k1 > max
{
4

α

(3 + α)(2− α)
,

α

1 + α

}
µx

k2 > max
{
µy, µy +

3

2(1 + α)

}
1

2
(k1 − µx) >

1

1 + α
(k2 − µy) >

6

(3 + α)(1 + α)
µx

k1 (k2 − µy) >
6

(1 + α)(2− α)
1 < k21 (k1 − µxsgn(x)) (15)

for 0 ≤ α < 1 and asymptotic stability for α = 1.
Now, in the following sections the main results of this

paper will be developed.

III. MAIN RESULTS

In this section a new strict Lyapunov function is proposed
for the perturbed system (5).

Let consider a positive definite Lyapunov function of the
form

V (x, y) =
2− α
2

(k1 − µxsgn(x))2 |x|
4

2−α

+ (k1 − µxsgn(x)) |x|
2

2−α y2

+ |x|
3

2−α sgn(x)y +
1

2(2− α)
y4nlf) (16)

This function is continuous everywhere but not
differentiable on x = 0.

Theorem 3: System (5) has finite time convergence to
the point (x, y) = (0, 0) with

treach ≤
1

ζminp
γ

3+α
4

maxV
1−α
4 (x(0), y(0)) (17)

as an estimation of the convergence time with V (x, y)
defined as (11),

ζminp = min
{
ηxηy −

3

2

1 + α

2− α
,

1

2− α

(
ηy −

3

2
(1 + α)

)
,

ηx − ηy
1

1 + α
, ηx −

α

1 + α

}
(18)

γmax = max

{
λmax (P2) ,

1

2(2− α)

}
, (19)

with P2 =

[
2−α
2 (k1 − µxsgn(x))2 1

2
1
2

2−α
2 (k1 − µxsgn(x))

]
.

if

k2 > µy +
3

2
(1− α)

k1 > µx +
1

1 + α
max{ηy, α}

ηxηy >
3

2

(
1 + α

2− α

)
(20)

with
ηx = k1 − µx; ηy = k2 − µy (21)

for 0 ≤ α < 1 and asymptotic stability for α = 1.

An sketch of the proof of Theorem 3 is shown on
Appendix I.

IV. NUMERICAL EXPERIMENTS

To illustrate the algorithm performance consider a trac-
king problem of the one-link pendulum system affected by
Coulomb friction and external perturbations bounded by
inequality (4). The state equation of a controlled one-link
pendulum (see Fig. 1) is given by

(ml2 + J)q̈ = mglsin(q)− F (q̇) + τ + δ(t, q, q̇) (22)

where q is the angle made by the pendulum with the

Fig. 1. The one-link pendulum system.

vertical, m is the mass of the pendulum, l is the distance to
the center of mass, J is moment of inertia of the pendulum
about the center of mass, g is the gravity acceleration, τ is
the control torque. The friction force F is described by

F (q̇) = ρv q̇ + ρcsign(q̇). (23)
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where ρv > 0 denotes the viscous friction coefficient and
ρc > 0 denotes the Coulomb friction level. Suppose that
the uncertainty term δ(t, q, q̇) is bounded by growing terms
as in (4).

The control objective is to drive the one-link pendulum
to a known trajectory in exact finite time, i.e.

q(t)− r(t) = 0 (24)

where r(t) = 1
8sin(t) even in the presence of an admissible

external disturbance (4). Let x = q and y = q̇, then equation
(22) can be written in the state space form

ẋ = y

ẏ =
1

(ml2 + J)

(
mglsin(x)− ρvy + ρcsign(y)

+ τ + δ(t, x, y)
)

(25)

Let the tracking error given by

e(t) = x(t)− r(t). (26)

Using equations (25), the error dynamics are described by

(ml2 + J)ë = mglsin(x)− ρvy + ρcsign(y) + τ

+ δ(t, x, y)− (ml2 + J)r̈.

(27)

Let us choose the control in the form with α = 1
5

τ =
(
ml2 + J

)
r̈ − k1|e|

α
2−α sign(e)− k2|ė|αsign(ė)

−mglsin(x) + ρvy (28)

with α = 1/5 and where (15) are satisfied. Parameters of
a real laboratory one-link pendulum system are considered:
the mass of the pendulum is m = 0.5234kg, the length of
the link l = 0.108m, and the inertia about the center of
the mass j = 0.006kg ·m2. The Coulomb friction is given
by ρv = 0.00053N ·m · s/rad and the viscous friction as
ρc = 0.05492N ·m.

The initial conditions for the pendulum, are fixed as
θ(0) = π rad and θ̇(0) = 0 rad/seg for the position
and velocity, respectively . In Figure 2 shows the dynamics
of one-link pendulum system in closed loop affected by
the bounded external perturbations. The simulations of the
double integrator use fixed gains as in (18-21),i.e. k1 = 7,
k2 = 3,2. In this numeric experiment, the double integrator
is affected by δ(x, y) = sin(100t)

(
3|x|

α
2−α + |y|α

)
N ·m

denotes a high frequency uncertainty term bounded by (4).
This kind of tern is commonly used in control theory.

As Fig. 2 shows, the closed loop system with the studied
design achieves the control objective and the one-link pen-
dulum follows the desired trajectory in spite of bounded ex-
ternal uncertainties. Moreover, The strict Lyapunov function
gives an estimation of convergence time. The estimation of
convergence time using equation (17) gives

treach ≤ 107,91 sec (29)

Fig. 2. Tracking stabilization of a one-link pendulum.

while in numerical simulations the convergence time is
less than 10 seconds. In comparison, the estimation of
convergence time given in [(Santiesteban, 2013)] is

treach ≤ 251,5877 sec (30)

V. CONCLUSIONS
A family of continuous output feedback control is tuned

such as global finite time convergence with respect to the
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growing perturbations is shown. With this aim, a non-
smooth strict Lyapunov function is proposed allowing an
estimation of the upper bound of the convergence time.
The performance of the proposed algorithm was shown by
solving the tracking control problem of a one-link pendulum
in spite of bounded external and parametric perturbations.
The closed loop mechanical system showed to be robust
and provide nice performance in spite of unknown but
bounded uncertainties. For future work, this result can be
easily generalized for multidimensional case. Moreover, it
can be extended when a state variable is not available for
measurement, then a finite time observer can be applied
such as super-twisting algorithm.
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VI. APPENDIX I

Proof of theorem 3: In order to show that function
V (x, y) is positive definite, let us describe it as follows

V (x, y) = |x|
2

2−α
(
ρTPρ

)
+

1

2(2− α)
y4 (31)

where ρT = [|x|
1

2−α y] and

P =

(
2−α
2 (k1 − µxsgn(x))2 1

2

1
2

2−α
2 (k1 − µxsgn(x))

)
(32)

Now, if det(P ) > 0 then function (31) is definite positive,
then the following inequalities must hold at all time:

(2− α)2 · (k1 − µxsgn(x))3

4
− 1

4
> 0 (33)

since 0 ≤ α ≤ 1, if

(k1 − µxsgn(x))3 > 1 ≥ 1

(2− α)2
(34)

A lower bound for function (31) can be written as follows

γmin

(
|x|

2
2−α ‖ρ‖2 + y4

)
≤ V (x, y) (35)

where γmin = min
{
λmin(P ),

1
2(2−α)

}
. Notice that

λmin(P ) denotes the minimum eigenvalue of matrix P .
Now, an upper bound for the Lyapunov function (31) can
be written as follows

V (x, y) ≤ γmax
(
|x|

2
2−α ‖ρ‖2 + y4

)
(36)

where γmax = max
{
λmax(P ),

1
2(2−α)

}
. The time deriva-

tive of (31) along the trajectories of the perturbed system
(5) is given by (after some algebraic simplifications)

V̇ (x, y) ≤ −2 (k1 − µx) (k2 − µy) |x|
2

2−α |y|α+1

+
3

2− α
|x|

1+α
2−α y2 − (k1 − µx) |x|

3+α
2−α

− (k2 − µy) |x|
3

2−α |y|αsgn(xy)

− 2

2− α
(k2 − µy) |y|α+3 (37)

Using equation (21), then the equation above can be written
as follows

V̇ (x, y) ≤ −|y|α+1

(
ηxηy|x|

2
2−α

− 3

2− α |x|
1+α
2−α |y|1−α +

1

2− αηy|y|
2

)

− |x|
2

2−α

(
ηx|x|

1+α
2−α − ηy|x|

1
2−α |y|α

+ ηxηy|y|α+1

)
(38)

In order to show that V̇ (x, y) ≤ 0, consider the following
inequalities

|x|
1+α
2−α |y|1−α ≤ 1

rc
γrcc |x|

2
2−α +

1

sc
γ−scc |y|2,

for rc =
2

1 + α
, sc =

2

1− α
|x|

1
2−α |y|α ≤ 1

rd
γrdd |x|

1+α
2−α +

1

sd
γ−sdd |y|1+α,

for rd = 1 + α, sd =
1 + α

α
(39)
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Let γc = γd = 1, then equation (38) simplifies as follows

V̇ (x, y) ≤ −|y|α+1

(
|x|

2
2−α

(
ηxηy −

3

2

1 + α

2− α

)

+
1

2− α |y|
2

(
ηy −

3

2
(1− α)

))

− |x|
2

2−α

(
|x|

1+α
2−α

(
ηx −

1

1 + α
ηy

)

+ηy|y|α+1

(
ηx −

α

1 + α

))
(40)

if

(k1 − µx) (k2 − µy) >
3

2

(
1 + α

2− α

)
k2 > µy +

3

2
(1− α)

k1 > µx +
1

1 + α
max{ηy, α}

(41)

hold, the time derivative of the Lyapunov function V (x, y)
is negative definite. Since the inequalities (41) are in terms
of the positive constants γc and γd, a solution can be found,
always. In order to show the stability of the system (5), let
us write the equation (36) as follows

V (x, y) ≤ γmax
(
|x|

1
2−α + |y|

)4
(42)

(
V (x, y)

γmax

) 1
4

≤
(
|x|

1
2−α + |y|

)
(43)

and the let us write the equation (37) as follows

V̇ (x, y) ≤ −ζminp
(
|x|

1
2−α + |y|

)3+α
(44)

where ζminp is given by (18). Then equation (42-44) can
be written as

V̇ (x, y) ≤ −ζminp
(
V (x, y)

γmax

) 3+α
4

(45)

Then finite time stability of system (5)can be concluded.
To estimate an upper bound for time convergence, let us
consider the following comparison system

ω̇ = −aω
3+α
4 (46)

The solution of this system is ω(t) = (ω
1−α
4 (0) − at)4,

and thus the estimation for reaching time is treach =
1
aω

1−α
4 (0). Summing up, an estimation of an upper bound

for the reaching time of the system (5) can be calculated as
equation (12).

When α = 1, equation 45 is as follows

V̇ (x, y) ≤ −ζminp
γmax

V (x, y) (47)

then asymptotic stability of the closed loop system (5) is
shown.
z
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