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Camino a la Presa San José 2055 Col. Lomas 4ta 78216
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Abstract—In this paper, we analyze the limitations that
imposes the presence of uncertainty in the design of energy
management strategies for FC (fuel cell) electric vehicles. Using
a electric power source constituted by a hydrogen fuel cell and
a battery bank, the fuel consumption minimization problem
is analyzed in the presence of parametric uncertainty. The
conditions that ensure that the nominal solution matches the
real (uncertain) solution are clearly stated and it is shown
that the presence of bounded uncertainty limit the set of
admissible solutions. By observing that any finite energy source
will also limit the feasible solutions of the optimization problem,
a supervisory control is designed to face such limitations.
Moreover, a cascade control is proposed to face uncertainties
in the current tracking task of the converters. Numerical
simulations provide evidence of the advantages and features
of the proposed strategy.

Keywords—Energy management, Robust optimization.

I. INTRODUCTION

Nowadays fossil fuels are largely consumed for electric
generation and vehicle propulsion[1]. Along with fuel con-
sumption, there is a proportional rise of the levels of environ-
mental pollution therefore some solutions based on renewable
energy have been proposed [1]-[8]. Electric propulsion of
vehicles constitutes an option widely studied to design zero-
emissions transportation [1]-[8]. Electric vehicles through
the use of modern electric storage systems (ESS) have
shown its reliability and technical feasibility [3]. Among
known technologies, Proton Exchange Membrane Fuel Cells
(PEMFC), constitute the most suitable solution to extend
the vehicle autonomy with zero emissions; furthermore their
tank can be filled in short periods of time, as conventional
vehicles do (see [2]). However, the technical feasibility and
safety of the use of FC in practical applications must be
still demonstrated [3]. In order to provide such technical
evidence, a variety of authors has proposed design criteria
for the power propulsion system [12]-[16] as well as energy
management strategies (EMS) [4]-[8], [11], [17],[18]. Most
of these EMS can be categorized as i) optimization based

and/or ii) heuristic-rule based. In either one, the objective
is to reduce the fuel consumption while guaranteeing the
accomplishment of security and performance restrictions on
the ESS and the FC.

An advantage of the optimization-based strategies is that
their solution can be called ”minimal” and that they have
the back-up of formal results that allows its application in a
wide number of vehicles. On the other hand, heuristic based
strategies generally lack of theoretical support but they are
simple and can be applied in real-time. Its application has
been shown successfully in a variety of vehicular systems [8],
[19]. Among the optimization-based strategies it is worthy
noticing the following works. In [4], the restrictions of the
optimization problem are fixed according to a maximum FC
efficiency. The strategy takes into account also important
restrictions on the rate of change of the FC delivered power,
which ensures that the FC does not flood nor dry. However
as the authors state in [5], operation of the cell at the
maximum efficiency cell zone, over-dimensions the size of
the cell and its power generation is not completely exploited.
On the other hand, in [6] a two-stage energy management
control is proposed that takes into account the FC longevity.
Based in a discrete-time model of the propulsion system, the
Pontryagin´s Minimization principle is used to reformulate a
full-driving-cycle optimization problem into an instantaneous
optimization problem. The problem of computing unknown
multipliers of the objective function is solved using a sta-
tistical model over all possible driving cycles. The authors
show the feasibility of the application trough numerical
simulations.

In spite of all these works above constitute important
advances, still some questions regarding the effect of uncer-
tainty in optimized EMS are unsolved. The aim of this paper
is along these lines. In particular, in this paper we analyze
the effect of parametric uncertainty in the fuel consumption
minimization problem in an electric power-train constituted
of a bank of batteries and a PEMFC. To this end, we
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depart of a unknown traction model and unknown objective
function and driving cycle, to analyze the limitations of
finding the ”real” optimum. In particular, if the nominal
value and an upper bound of the parameter uncertainty are
available, the conditions that ensure the coincidence of the
nominal and real optimal solution are clearly stated. To
overcome the limitations that inevitably impose the design
of the power-train in the existence of the optimal solution,
a robust supervisory-cascade control is proposed to ensure
the availability of energy and the required power in the
hybrid power-train. The proposed strategy has the advantage
of being feasible to implement in real-time applications,
since is based in discrete-time description and can be found
analytically.

This paper is organized as follows: The models and the
uncertain optimization problem are introduced in Section II.
The existence and the computation of the optimal solution
is given in Section III the supervisory control is analyzed
in Section IV.Numerical simulations are shown in Section V,
and finally, Section VI summarizes the main contribution of
this paper and presents some conclusions.

II. SYSTEM DESCRIPTION AND PROBLEM STATEMENT

Let us consider an electric vehicle with the power-train
given in Figure 1. The vehicle uses energy from a PEMFC
and/or from a battery bank with the help of two DC-DC
links, one for each energy source. Such configuration allows
the control of the shared power as well as its rate of change.

Fig. 1. Electric Power-train.

The electric power demanded by the vehicle is depen-
dent of various factors: i) the vehicle dynamics (i.e. rolling
resistance, gravitational and aerodynamical forces, etc.) ii)
the efficiency of the movement transmission given by the
mechanical design of the vehicle (ηt), iii) the efficiency of
the converters (ηc), the motor efficiency (ηmotor) and the
efficiency of the battery bank and FC (ηsource) and finally
iv) the driving conditions.

The schematic diagram of the power demand is given in
Figure 2. In this paper, we will assume that such power
demand is known at every (present) time and that no pre-
dictive knowledge of the driving cycle is available. Notice
that such assumption implies the knowledge of the current
demand at every time k and that the results of the energy
management strategy are valid even in presence of uncertain
vehicle dynamics. The objective of the power management
strategy is to minimize the fuel consumption by choosing
an appropriate power split among the FC and the battery

Fig. 2. Power Demand.

bank. It is known that the hydrogen consumption (∆mH2 ) is
proportional to the current delivered by the fuel cell (IFC)
[7], [8]; that is

∆mH2 = −NMH2IFC

2F
(1)

where N is the number of cells in the stack, MH2 is the
molar mass of H2 and F is the Faraday constant. Moreover
since at every time the current supplied by the battery bank
IB and by the fuel cell must satisfy the following:

Iload[k] = IB[k] + IFC [k] (2)

where IFC [k] > 0 and Iload[k] is the current demanded
by the load, it is clear that we can introduce a convex
parametrization in (2) to propose a suitable objective function
that attain the minimization objective. That is, in view of
Eq. (2), let us define the parameter β with 0 ≤ β ≤ 1,
such that if β = 1 all the current required by the load is
provided by the batteries and if β = 0 all the current is
provided by the fuel cell; while for 0 < β < 1, the current
is provided by both sources. Using such parametrization the
battery and FC currents are given by IB [k] = βIload[k] ,
IFC [k] = (1− β)Iload[k] and the minimization problem can
be formulated as follows,

min
β

J = c(1− β)2(Iload[k])
2 (3)

with c > 0 a constant. Observe that (3) is proportional to the
quadratic hydrogen consumption and it has been chosen as
a suitable convex function of parameter β to guarantee the
existence of the optimized solution [20]. The minimization
problem is subjected to the following restrictions:

SOC[k]− SOCmax ≤ 0 with SOCmax ≤ 1 (4)

SOCmin − SOC[k] ≤ 0 with SOCmin > 0 (5)

SOC[k+ 1] = SOC[k]− c1IB[k] with c1 > 0 (6)

PFC [k]− PFCmax ≤ 0 with PFCmax > 0 (7)

PFCmin − PFC [k] ≤ 0 with PFCmin > 0 (8)

∆PFC [k]−∆PFCmax ≤ 0 with ∆PFCmaxn > 0
(9)

∆PFCmin −∆PFC [k] ≤ 0 with ∆PFCmin < 0
(10)

where SOC is the state of charge of the battery bank, PFC

is the power supplied by the Fuel Cell and ∆PFC is the rate
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Fig. 3. Schematics of a typical PEMFC polarization curve

of change on PFC . Notice that a discrete time k is used to
describe the time evolution of the system.

In order to express restrictions (4)-(10) as function of β,
consider the following arguments. The polarization curve
can be used to express the voltage of the fuel cell as a
function of the its current (i.e. VFC = g(IFC)). In general, a
polarization curve is comprised of three regions (See Figure
3). A first one, at low current and high voltages, where
current losses are related with the required energy to initialize
the reaction (open-circuit zone). A second one, where current
losses are mainly attributed to the Ohmic resistance of the
electrolyte resistivity and the external resistance of electrodes
and connections (linear region), and a third one, located at
high current and low voltages, where the behavior is limited
by the mass transfer rate (depletion zone). For safety reasons,
it is reasonable to exclude depletion and open-circuit zones
from the FC operation; therefore, FC power can be expressed
as:

PFC [k] = IFC [k](−a1IFC [k] + b1)

= (1− β)Iload[k](−a1(1− β)Iload[k] +

+b1) (11)

The restrictions (4)-(10) can be rewritten in function of β as
follows

f(β; γ) ≤ 0 (12)

where

f(β; γ) =



SOCmax−SOC[k]
γ1Iload[k]

− β

β + SOCmin−SOC[k]
γ1Iload[k]

(1− β)Iload[k][−γ2(1− β)Iload[k] + γ3]− γ4
(1− β)Iload[k][+γ2(1− β)Iload[k]− γ3] + γ5

β − 1
−β


(13)

with γ = [c1, a1, b1, PFCmax, PFCmin]
T where γi with

i = 1...6, be the elements of γ and ≤ denote element-wise
inequality.Where

PFCmin = max{PFCmin, PFC [k − 1] + ∆PFCmin}

PFCmax = min{PFCmax, PFC [k − 1] + ∆PFCmax}

and PFC [k − 1] is given by (11). Notice that the last two
entries of f account for 0 ≤ β ≤ 1. Let us denote the nominal
value of the parameter vector γ as γ and the maximum
allowable uncertainty bound as ∆γmax. The restrictions

f(β; γ) ≤ 0 (14)

constitute the nominal value of restrictions (12). Let us
denote as Uncertain Fuel Economy Minimization problem
(UFEMP) the minimization of (3) subjected to (12) and
Nominal Fuel Economy Minimization problem (NFEMP),
the minimization of (3) subjected to (14).

A. Problem Statement

Consider a given vehicle design with a traction system
given in Figure 1.

Problem 1:Compute the solution of the NFEMP and
establish conditions for the this solution to match
the solution of the UFEMP.
Problem 2: Establish an energy management policy
that ensures the current feeding to the load and
performance of the traction system in spite of
parametric bounded uncertainty.

III. THE SOLUTION OF THE NFEMP AND THE
UNCERTAIN OPTIMIZATION PROBLEM

Let us assume the existence of the following two sets:

Ωuncertain = {β|f(β; γ) ≤ 0} (15)

Ωnom = {β|f(β; γ) ≤ 0} (16)

where Ωuncertain and Ωnom are the feasible sets of the real
and nominal restrictions. Notice that is reasonable to assume
the existence of such sets, otherwise the solutions of the
nominal and uncertain constrained minimization problem do
not exist. Let us denote such solutions as βmin and βmin

respectively.
Let us compute the solution of the NFEMP (βmin).There

exist in the literature a variety of numerical methods for the
computation of the solution; however, the relative simplicity
of the problem allows us to illustrate the solution as a
function of the demanded current Iload[k]. In view of Eq.
(13), it is clear that the restrictions of both, the battery and
the fuel cell are dynamical, changing at every instant k. Let
fi, i = 1...6, be the elements of (13). Notice that restriction
f1 ≤ 0 is only active while the battery is charging. On the
other hand, since f2 ≤ 0 is related with the minimum level
of SOC it must be monitored continuously. Observe that
such restriction depends inversely of the demanded current
Iload[k] and that the maximum value of β is given by the
distance SOCmin −SOC[k]. That is, the larger SOC level,
the larger β is allowed for a given current demand.

Restrictions f3 = 0 and f4 = 0 can be rewritten as:

−γ2z
2 + γ3z − γ4 = 0 (17)

−γ2z
2 + γ3z − γ5 = 0 (18)
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Fig. 4. Feasible region for optimization

Notice that the solutions of (17)-(18) depends only on FC
parameters and therefore, they can be computed off-line.
Before computing such solution it is worth noting that most
fuel cells display a quadratic behavior of the derived power
upon the current; that is, the same power can be obtained
with two different currents (see Figure 3). It is known that
the depletion zone is usually avoided because the cell floods,
leading to a FC malfunction. In view of the arguments above,
it is possible to establish that for most fuel cells γ2

3 > 4γ2γ4
and both solutions of (17)- (18) are real; however, the high
current solution is avoided because it belongs to the depletion
zone.

In this way, let us consider the low current solutions of
(17)-(18), these are:

zmin =
−γ3 +

√
γ2
3 − 4γ2γ5

−2γ2

(19)

zmax =
−γ3 +

√
γ2
3 − 4γ2γ4

−2γ2

(20)

Figure 4 displays these curves denoted as B and C respec-
tively. Observe that the solution of the nominal optimization
problem is only feasible in the shaded region, where restric-
tions from the battery and the fuel cell are satisfied.

From Figure 4 it is also possible to observe the existence
of a maximum current demand Iopt,max for which the power
share is feasible. The solution moves along line B (minimum
FC power) until the battery discharges considerably for curve
A to intersect B. At this point the power split moves along the
battery restriction, curve A, until it intersects the curve of the
maximum FC power (curve C) at Iopt,max. Notice that the
distance Iopt,max−IFC,max where IFC,max is the maximum
current that can be extracted to the fuel cell, depends on
battery SOC and beyond this point, the only choice is to use
the FC as sole energy source. In general Iopt,max ≥ IFC,max

being Iopt,max = IFC,max only when the battery attains its
minimum level (recall that curves A,B,C are time-varying).
Notice also that if the SOC level is high, the solution β = 1
(the unconstrained solution) may be feasible, and nominal
and real solutions match.

Remark 1: It is clear at this point, that the design restric-
tions (16) naturally impose limitations to the optimization-
based energy management strategy and that such strategy
alone cannot be applied directly. Therefore in this paper we
propose the use of a supervisory control (see Figure 5) that
allows the correct operation of the propulsion system, even
when optimization is not possible.

Fig. 5. Proposed energy management strategy.

A. Connections with the solution of the UFEMP

At this point the solution of the NFEMP βmin has been
found, but still is not clear if βmin will satisfy the real
restrictions (12); that is , two questions still remain open:
i) How the nominal parameter vector γ can be chosen to
satisfy the (uncertain) real restrictions? and ii) When the
solutions of the NFEMP and UFEMP are the same? (i.e.
βmin = βmin). In order to answer these questions, firstly
notice that Ωuncertain ∩ Ωnom ̸= ∅ is a necessary condition
for βmin = βmin otherwise the solutions may belong to two
different and disconnected sets. Let

∂Ωnom = {β|f(β; γ) = 0} (21)

Remark 2: If Ωuncertain ⊃ Ωnom , βmin ∈ Ωnom and
βmin /∈ ∂Ωnom then the solutions of the NFEMP and
UFEMP coincide.

To see clearly this point, let us recall that β is scalar;
therefore, restrictions (12) and (14) can be reduced to a
maximum and minimum restrictions over β as follows:

Ωuncertain = {β|β ≤ βreal,max ∧ β ≥ βreal,min}
Ωnom = {β|β ≤ βnom,max ∧ β ≥ βnom,min}

∂Ωnom = {β = βnom,max ∧ β = βnom,min}

with
βmax,max ≤ βreal,max ≤ βmax,min
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βmin,max ≤ βreal,min ≤ βmin,min

derived from the uncertainty bound ∆γmax and the continu-
ity of (12). If

βnom,max = βmax,min (22)

βnom,min = βmin,max (23)

then Ωuncertain ⊃ Ωnom. In this case, βmin can be found
solving the NFEMP, since its solution coincides with the
unconstrained solution of the nominal system given that
βmin ∈ Ωnom and βmin /∈ ∂Ωnom. However if βmin ∈
∂Ωnom the solution of the NFEMP becomes βmin,max or
βmax,min while the solution of UFEMP still is the one of
the unconstrained solution of the nominal system. That is,
irrespectively of the amount of uncertainty, there always
exists a region where both solutions do not coincide, such
region occurs in a neighborhood of the estimated value of γ
(γest), given the continuity of (12). The larger the uncertainty,
the larger this region is. Moreover, there exist a maximum
uncertainty bound such that the real and nominal solutions
coincide (i.e. βnom,max ≤ βnom,min) beyond this point,
solving the optimization problem is not worthy.

Remark 3: Notice that the definition of the nominal values
(22)-(23) guarantee the satisfaction of the real restrictions
and that γ can be computed numerically using (12) with an
estimated value of γ and the uncertainty bound ∆γmax.

IV. SUPERVISORY CONTROL

As stated in Remark 1, the design of the propulsion system
inherently limits the optimized values of β (see Figure 4);
therefore, we propose an heuristic-based strategy for such
cases(see Figure 5). For Iload[k] < IFC,min two choices
are possible, if the battery SOC is sufficiently high, it is
reasonable to use only the battery since our objective is to
save as much fuel as possible. However, this choice can not
be made if the battery attains its minimum value. In this
case, the fuel cell must provide all the power. On the other
hand, as stated above, once Iload[k] > Iopt,max = IFC,max

the only choice available is to use the FC alone, while for
charging or regenerative breaking mode, restriction (4) must
be taken into account. The modes of the supervisory control
proposed in this paper are stated in Table I.

Tabla I
MODES OF THE SUPERVISORY CONTROL

Mode β Conditions
1 1 Iload[k] ∈ [0, IFC,min) and SOC[k] ≥ SOCmin

2 0 Iload[k] ∈ [0, IFC,min) and SOC[k] < SOCmin

3 βmin Iload[k] ∈ [IFC,min, Iopt,max]
4 0 Iload[k] ∈ (Iopt,max, IFC,lim)and

SOC[k] < SOCmin

5 reg Iload[k] ≤ 0 and SOC[k] < SOCmax

6 drop Iload[k] ≤ 0 and SOC[k] ≥ SOCmax

In this table, “reg” accounts for the regeneration mode
and “drop” for the energy dropping mode (i.e. when the
energy from the regenerative braking cannot be stored and
the excess must be dropped); moreover IFC,lim is the limit of

operation of the FC. It is worthy noticing that the supervisory
control is well defined, since no concurrence of modes can be
given and since a control action is always specified for any
Iload. Moreover, the stability of the supervisory control is
guaranteed by the following facts: i) no chattering can occur
given the discrete-time nature of the control, ii) the values of
β are upper and lower bounded iii) the rate of change of β
is also upper and lower bounded. ii) and iii) guarantee that
the the trajectories described by the supervisory control are
invariant [10] in 0 ≤ β ≤ 1.

The structure of the supervisory control can be observed in
Figure 6. Notice that once the value of β is known, a current
reference can be computed using the demanded current and
expressions IB[k] = βIload[k] and IFC [k] = (1− β)Iload[k]
to compute the current sharing.

Fig. 6. Supervisory control structure.

Once the reference currents have been computed, the
following step is to track them using a cascade control as
depicted in Figure 7. To choose a suitable controller for this

Fig. 7. Structure of the current control.

task, notice that convergence rate of the current controller
may impact adversely on fuel economy of the power train,
since slow control actions may lead to suboptimal solutions,
making useless the optimization stage of supervisory con-
troller. To avoid this limitation , piece-wise-constant or hybrid
are better choices that averaged model-based controllers. In
this work a hybrid current control is applied [21].

If the converter dynamics is sufficiently fast, the stability of
the cascade control can be analyzed as being decoupled; that
is, as time-invariant system (regulation) instead as a time-
varying one (time-varying tracking). As discussed above,
hybrid controllers are more suitable to this task since it is
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known that its rate of convergence is not limited by averaged
(slow) description of the system.

The robust practical controllability or robust practical
stabilizability of the current regulation is studied in [21]
departing from a piece-wise model of the converter. In this
reference, the conditions over uncertainty to guarantee the
stability of the current are explicitly given. Moreover, the
controller in [21] guarantee not only fast convergence (the
current is followed in n+1 switchings, where n is the number
of inductors); but also, a maximum current ripple. Such
characteristic is especially convenient for fuel cells, since it
is known that large current ripple lead to FC malfunction. If
converter settle time is sufficiently low, the stability analysis
in [21] can be applied directly to conclude that the robust
tracking of the current reference with a maximum current
ripple (observe that is the maximum, and not the minimum
ripple the one of interest). We illustrate the implementation
of this controller in the following section.

V. ILLUSTRATIVE EXAMPLE

The objective of this section is to evaluate robustness
and performance of the proposed control strategy as well
as illustrate the implementing procedure of the proposed
controller above. To this end, simulations in a vehicle sys-
tem are performed with the next parameters;PFC,min =
0W ,PFC,max = 2800W ,a1 = 0.25V/A,b1 = 80V ,c1 =
6.914e − 5(1/A),c = 1e − 5,SOCmin = 0.25,SOCmax =
1,Vload = 200V ,∆PFC,min = −2800W ,∆PFC,max =
2800W ,ηt = 0.9,ηe = 0.77,cr = 0.014,cd = 0.5,Af =
3.225m2,mv = 1000Kg,rw = 0.2651,where cr rolling
coefficient, cd drag coefficient, Af frontal area, mv vehicle
mass, φ gear ratio, rw wheel radius. The converters used are:
i) a boost converter for the FC and ii) a bidirectional boost
converter for the battery. Through numerical simulations
we are interested in i) evaluating the performance of the
supervisory control and analyzing the differences of the
UFEMP and NFEMP as a function of the uncertainty bounds,
ii) analyzing the effect of parameter PFC,min on the fuel
economy, iii) contrasting our findings for different driving
cycles and iv) giving evidence of the applicability of the
current control.

A. Results and discussion

As a first step in analyzing the supervisory control, we
implement algorithm in Figure 5. At every discrete time
k, computation of the power bounds PFC,min, PFC,max

must be performed depending on battery SOC. The fuel
economy, as a function of parameter PFC,min for City II
and New European driving cycle under the next cases: i)is
the no uncertainty, ii) ∆γ2 = −0.125,∆γ5 = 560,∆γ1 =
0,∆γ3 = 0,∆γ4 = 0, while iii)∆γ2 = −0.225,∆γ5 =
2240,∆γ1 = 0,∆γ3 = 0,∆γ4 = 0. In all cases the initial
value of SOC = 1.

The fuel economy as a function of parameter PFC,min

for European (NEDC) [22] and City II Driving Cycle under
different uncertainty bounds is shown in Figure 8 and 9. The

fuel economy is calculated as follows:

FuelEconomy = (H2FC −H2EMS)/H2FC (24)

where H2FC is the consumed fuel by using only the Fuel
Cell, H2EMS is the consumed fuel by using proposed
EMS and two energy sources (Fuel Cell and Battery). From
observing in Figure 8 it is clear that for low PFC,min the fuel
economy is high. In this cases, the region where optimization
is feasible is large, being the largest at PFC,min = 0,
therefore this region is very susceptible to uncertainty. It
can be observed that the real economy is always larger
than the uncertain cases (region 1); however this not the
region 2. In this case the feasible region for optimization
is narrower for the real parameter case, being the narrowest
when PFC,min = PFC,max;that is, for the proposed strategy,
the heuristic rules play more active role in the vehicle
performance that optimization. It can be observed that the
proposed strategy has the worst performance for curve (i)
that when uncertainty is present.

Why in this cases the effect of the uncertainty is so
beneficial?, The reason reside in the feasibility region of
the nominal optimization problem, reaching for the Figure
8 almost the maximum economy possible for the scenario
(ii). These observations can also be performance for New
European Driving Cycle (Figure 9)however in this case the
shorter duration of the cycle (200s) leads to economy to be
more sensitive to variatios.

Fig. 8. Fuel Economy as a function of uncertainly bound. European driving
cycle.

From the observations above it can be concluded that the
uncertainty has an important effect on overall economy. As
the set Ωnom becomes narrower, the effect of the uncertainty
is more significant. Notice that as uncertainty increases,
the difference between UFEMP and NFEMP become more
significant (region 1 in Figure 8 and 9). In this point is
clear that the designer can evaluate the pertinence of solving
the optimization problem in view of the confidence of the
estimated parameters, since as discussed above, there exist a
maximum upper bound on the uncertainty such that solutions
of UFEMP and NFEMP intersect.

B. Evaluation of the supervisory-cascade performance
Due to converter-design considerations, usually the nom-

inal frequency (1/RC) is small compared to the design-
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Fig. 9. Fuel Economy as a function of uncertainly bound. City II driving
cycle.

switching frequency (fs); therefore, the output voltage re-
mains constant for short times (O(1/fs)). Under this condi-
tion, it can be seen that inductor current evolves describing
piecewise linear trajectories. In particular, when both sources
are providing current, each one of the boost converters
can be described by the integrator approximation given by
mjoff

=
Ej−Vload

Lj
> 0, and mjon =

Ej

Lj
6 0, where j = 1, 2

(i.e. the number of sources is 2). Such approximation is
used to design the hybrid current controller. In this case,
it is clear that practical stabilizability of the converter can be
achieve regardless the uncertainty bound as long as the sign is
preserved (see [21] for details). Notice that such uncertainty
may arise by the changing voltage of the FC and(or) battery
bank, or an inexact value of converters parameters (i.e.
inductors, load charge or capacitance).

In this example ∆mjoff
< 4.5 and ∆mjon < −7 has

been chosen. Using this approximation the following step
is defining a maximum current ripple, this has been fixed
with the help of design criteria as 0.05max Iload (10% of
the mean value of Iload). Figure 10 shows the time evolution
of the split power parameter β and the currents extracted
to the FC and battery bank. It is possible to observe that
the controller is able to track the reference successfully,
guaranteeing the fuel economy of the supervisory stage.

Fig. 10. Time evolution of the converter. City Cycle II driving cycle.

VI. CONCLUSIONS

In this work, the role of uncertainty in a optimized-based
EMS is analyzed. It is stated that in presence of bounded

uncertainty the restrictions of the system may be satisfied
but inevitable differences between the solutions of real and
uncertain problems arise. The conditions for this discrepancy
of solutions are clearly stated. Moreover, it is stated that
in order to face the limitations that naturally arise of the
constrained optimization problem, a supervisory-cascaded
control is proposed.

The stability of the supervisory modes are discussed and
efficiency of the proposed robust control it is shown through
numerical simulation. It is shown that the more strict restric-
tions on the power change of the FC leads to more sensibility
of optimized-based strategy to uncertainty, motivating the use
of alternative, possible heuristic, EMS for these cases.
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