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Abstract— This paper is devoted to the construction of a
hierarchical observer for a linear time variant system. It
presents an extension of the Output Integral Sliding Mode
observer to the time variant case, and gives an algebraic
procedure in order to reconstruct the state right after the
first moment, if we assume that the sliding mode exist and the
equivalent control is available
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I. INTRODUCTION

The sliding modes control is a suitable way to control and

estimate uncertain/perturbed systems (Utkin, 1992; Shtessel

et al., 2013). The only restriction for exact compensation of

the uncertainties/perturbations is that they must be matched.

The disadvantages of this kind of control are the presence

of a reaching phase, making the system not robust to

any disturbance/uncertainty, and the presence of chattering

during this phase (Utkin, 1992). However, in the last years

there have been developed different variants of sliding

modes techniques that eliminate the chattering and the

reaching phase. The Integral Sliding Modes (see (Matthews

and DeCarlo, 1988; Utkin and Shi, 1996; Castaños and

Fridman, 2006), for more details), were developed in order

to eliminate the reaching phase from the controlled sys-

tem, i.e. the system is invariant with respect to uncertain-

ties/perturbations since the initial moment. One of the main

issue of this theory is the design of the sliding surface.

In (Castaños and Fridman, 2006) it was proved that in

the presence of unmatched disturbances the best way to

minimize the effects of the uncertainty is to choose the

integral sliding surface gain matrix as the pseudoinverse

of the input matrix. So far this design methodology had

been developed for linear time invariant systems and non

linear systems, considering an invariant time sliding matrix

(Castaños and Fridman, 2006; Rubagotti et al., 2011). What

can we do if the input matrix is time variant? The main

problem when it is trying to implement an integral sliding

mode control is that we require full knowledge of the state

vector, including the initial condition. In order to solve

this problem it is necessary to design an observer. There

are two possibilities for the design of an output sliding

mode control. One is to use an output feedback control, i.e.

to design a sliding surface using only output information,

such that the dynamics of the system fulfils the given

requirements (Shtessel et al., 2013). Another way is to

construct an observer in order to estimate the state, and

use this estimation in a control law instead of the real ones.

Following this approach there are two viewpoints. One is

devoted to eliminate the tracking error between the observer

state and the system state in order to reconstruct the state as

fast as possible (Fridman et al., 2009; Fridman et al., 2011).

The other is dedicated to the state estimation step by step

(Hashimoto et al., 1990; Floquet and Barbot, 2004). In

(Bejarano et al., 2007) the use of a hierarchical observer

is proposed based on an output integral sliding mode

technique for linear time invariant systems, allowing to

reconstruct the state right after the initial time even in the

presence of unknown inputs. The aim of this paper is to

propose a methodology to design a hierarchical observer for

linear time variant systems in order to reconstruct the state

since the first moment using the time variant observability

matrix. This paper is organized as follows: First we present

the definition of an uncertain linear time variant system and

the necessary assumptions follows by the main objective.

Then in section III we present a formal definition of a

time variant output integral sliding mode. In section IV we

present the design procedure for a hierarchical observer, that

would help us to reconstruct the state needed for the time

variant output integral sliding mode. The applicability of

the proposed approach is illustrated by simulation results.

Section VI concludes the paper.

II. PROBLEM FORMULATION

Let us consider the following uncertain linear time variant

system defined on the time interval [t0, tf ]

ẋ(t) = A(t)x(t) +B(t) (u(t) + φ(x, t)) ,

y(t) = C(t)x(t), x(t0) = x0,
(1)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the

control input vector and y(t) ∈ R
p is the output vector. The

function φ : Rn × R → R
m represents the uncertainties

due to parameter variations, unmodelled dynamics and/or

exogenous disturbances; and A : R → R
n×n, B : R →

R
n×m and C : R → R

p×n are continuously differentiable

matrix functions. In order to eliminate the effects of the

disturbances we need to define a nominal system for (1)
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assuming φ = 0.

ẋn(t) = A(t)xn(t) +B(t)un(t), xn(t0) = x0, (2)

where un be the nominal control designed to achieve any

stable control objective.

Remark 2.1: Note that the trajectories (1) and (2) could

be in general quite different. Also the trajectory of (1) is

not unique, while the trajectory of (2) is unique.

Assuming that the state vector of (1) is unmeasurable, it

is necessary to design an observer to reconstruct this state

vector and use it in a suitable control law. Our aim is to

design an algebraic hierarchical observer (Bejarano et al.,

2007) that allow us to approximate step by step the states of

the time variant system (1) based on the measured outputs

since the first moment, i.e. x̂(t) = x(t), where x̂(t) is the

approximate state. The approximate states x̂(t) will be used

to design an output integral sliding mode control (Bejarano

et al., 2009) for an uncertain linear time variant system on

the based of a nominal system (2), allowing the trajectory

of (1) be equal to the one of (2), i.e. x(t) = xn(t) for all

t ∈ [t0, tf ]. Obviously the control objective is achieved only

if the equivalent control is able to reconstruct the negative

of the matched uncertainty/perturbation. For the proposed

sliding mode approach it is necessary to assume that:

A1 rank B(t) = m, ∀t ∈ [t0, tf ]
A2 The uncertainty/disturbance φ(x, t) is bounded:

‖φ(x, t)‖ ≤ φMax, for all t ∈ [t0, tf ], where

φMax ∈ R+ is given.

A3 The matrices A(t), B(t) and C(t) are l − 1 times

continuously differentiable matrix functions in the time

interval [t0, tf ], and these matrices and their derivatives

are bounded and known, and lc, lo ∈ Z+ and l =
max{lc, lo}.

A4 The pair (A(t), B(t)) is controllable in [t0, tf ] (Rugh,

1993; Kratz and Liebscher, 1998) with controllability

index lc.

A5 The pair (A(t), C(t)) is observable in [t0, tf ] (Rugh,

1993; Kratz and Liebscher, 1998), i.e. for some to ∈
[t0, tf ], the observability index lo is the minimum

integer such that rank(Olo(to)) = n, where

Olo(t) =















N0(t)
N1(t)
N2(t)

...

Nlo−1(t)















∈ R
pc×n, (3)

where N0(t) = C(t) and Ni(t) = Ni−1(t)A(t) +
dNi−1(t)

dt
for i = 1, . . . , lo.

A6 The initial condition is unknown but bounded, i.e.

‖x(t0)‖ ≤ µ.

III. OUTPUT INTEGRAL SLIDING MODE

In order to eliminate the effects of the uncertain-

ties/perturbations from the system (1) we need to generalize

the output integral sliding mode (Bejarano et al., 2007; Be-

jarano et al., 2009) to the time variant case. First, let u(t) =
un(t)+u1(t), where un is any suitable nominal control, and

u1(t) is the integral sliding mode control part guarantying

the compensation of the uncertainty/perturbation φ(x, t), in

the time interval t ∈ [t0, tf ]. Consider the linear time variant

system (1). Define the sliding surface

s(y, t) = G(t)y(t)−G(t0)y(t0)−

t
∫

t0

(

Ġ(τ)C(τ)x̂(t)

+G(τ)C(τ) (A(τ)x̂(τ) +B(τ)un(τ))) dτ,

(4)

where x̂(t) is the observed state and G(t) ∈ R
m×n is

a continuously differentiable design matrix. In contrast

with the integral sliding modes presented in (Castaños and

Fridman, 2006; Dullerud and Paganini, 2000; Rubagotti et

al., 2011), we defined a time variant sliding mode manifold,

where the matrix G is not assumed constant in t and Ġ is

known. Also note that the system is in the sliding mode at

the first moment, i.e. s(y(t0), t0) = 0. Taking the derivative

of the surface along the trajectories of (1)

ṡ(y, t) =
(

Ġ(t)C(t)+G(t)C(t)A(t)
)

(x(t)− x̂(t))

+G(t)C(t)B(t) (u1(t) + φ(x, t)) ,

s(t0) = 0.

(5)

The equivalent control (Utkin, 1992) that maintains the

trajectories on the surface (5) is

u1eq = −φ(x, t)

−D−1(t)
(

Ġ(t)C(t)+G(t)C(t)A(t)
)

(x(t)−x̂(t)) ;

D(t) = G(t)C(t)B(t), t ∈ [t0, tf ].

(6)

Substituting (6) in (1) yields the sliding mode dynamics

ẋ(t) = Ã(t)x(t) +B(t)un(t)

−B(t)D−1(t)
(

Ġ(t)C(t) +G(t)C(t)A(t)
)

x̂(t);

y(t) = C(t)x(t); x(t0) = x0, t ∈ [t0, tf ].

(7)

where the matrix

Ã(t) =
[

I −B(t)D−1(t)G(t)C(t)
]

A(t)

−B(t)D−1(t)Ġ(t)C(t).

Remark 3.1: Notice that in the time invariant case the

output integral sliding surface and the sliding mode dynam-

ics are equal to the one proposed in (Bejarano et al., 2007).

Then, the proposed methodology constitute a generalization

of the one in (Bejarano et al., 2007) for the time variant

case.

Remark 3.2: Note that the dynamics of the system under

the sliding mode control are of the same order than the one

of (1), but due to the equivalent dynamics it is not sure

that the observability properties remains in the controlled

system.
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In order to assure that the observability properties remains

in the pair (Ã(t), C(t)) we state the following lemma.

Lemma 3.1: When the number of outputs is less than or

equal to the number of inputs and Ġ(t) belongs to the null

space of the matrix C, the matrix Ã(t) always belongs to

the null space of the matrix C, and, consequently, the pair

(Ã, C) is not observable.

Proof: Consider the system (1) with p ≤ m and

rank(C(t)B(t)) = p for all t ∈ [t0, tf ]. Assume the control

law u(t) is designed as u(t) = un(t) + u1(t), where un
is the nominal control used after the compensation of the

matched disturbances/uncertainties and u1 is designed to

compensate the matched disturbances/uncertainties. Let us

analyze the case when p = m and later when p < m.

1) Consider the case when p = m. Define an output

integral sliding surface as in (4). The matrix G(t)
must satisfy rank (G(t)C(t)B(t)) = m for all t ∈
[t0, tf ], but this is only satisfied when det(G(t)) 6=
0. As we see in this section, the equivalent control

takes the form (6). Substituting this equivalent control

in the system (1) yields (7). Premultiplying Ã(t) by

G(t)C(t) we get G(t)C(t)Ã(t) = 0. This means Ã(t)
belongs to the null space of G(t)C(t) whenever Ġ(t)
belongs to the same space, and since G(t) is a non

singular matrix for all t ∈ [t0, tf ], then Ã(t) belongs

to the null space of C and it implies that (Ã(t), C(t))
is not observable.

2) Suppose that p < m. Let the output integral sliding

surface be again as in (4), but since rank(C(t)B(t)) =
p and p < m, then there is not any matrix G(t) ∈
R

m×p satisfying rank(G(t)C(t)B(t)) = m. That is

why the sliding surface s can not be designed in a

space of dimension greater than p. Let us define s

in the space R
p, with the matrix G ∈ R

p×p, and the

sliding surface has the form (5). Redefine the control

u1 as u1(t) = F̄ (t)ū(t) where the matrix F̄ ∈ R
m×p

should satisfy rank(G(t)C(t)B(t)F̄ (t)) = p. Then

B(t)F̄ (t) can be considered as a new input matrix

and ū as a control input, and we go back to case 1.

In order to prove that once the system enter to the sliding

surface it will remains on it, let us state the following

theorem.

Theorem 3.1: Under the assumptions A1-A6, the pro-

posed sliding dynamics (5) are uniformly finite time stable

(Rugh, 1993; Khalil, 2002) on the time interval [t0, tf ].

Proof: Let select

V =
1

2
‖s(·)‖2, t ∈ [t0, tf ],

as the candidate time variant Lyapunov function. Taking the

derivative of V along the trajectories of the sliding surface

(4)

V̇ (t) = sT (t)ṡ(t)

= sT
((

Ġ(t)C(t) +G(t)C(t)A(t)
)

(x(t)− x̂(t))

+ D(t) (u1(t) + φ(x, t))) .

Assume a first order sliding mode control (Utkin, 1992),

i.e. u1 = −βD−1(t)sign(s(t)), for all t ∈ [t0, tf ], where β

is a scalar. Then, the derivative of the candidate Lyapunov

function along the trajectories of the sliding surface can be

bounded as

V̇ (t) ≤ −‖s‖ (−Ξ‖x(t)− x̂(t)‖+ β −∆φMax) .

where max
t∈[t0,tf ]

‖Ġ(t)C(t) + G(t)C(t)A(t)‖ = Ξ and

max
t∈[t0,tf ]

‖D‖ = ∆. Then, the proposed sliding mode control

assures uniform stability (Rugh, 1993; Khalil, 2002) of the

sliding surface (5) if the scalar β satisfies the inequality

− Ξ‖x(t) − x̂(t)‖ + β −∆φMax ≥ λ > 0,

where λ is a constant. By the comparison principle (Khalil,

2002) and knowing that for construction V (s(t0)) = 0 since

s(y(t0), t0) = 0 the convergence time is given by t = t0
and the proposed sliding mode dynamics (5) are uniformly

finite time stable and converge to the surface since the first

moment.

Since the proposed sliding surface s is uniformly finite time

stable, then ‖s(t)‖ ≤ ‖s(t0)‖ = 0, for all t ∈ [t0, tf ] and

s(t) = ṡ(t) = 0 for all t ∈ [t0, tf ]. Note that the proposed

sliding control can be represented using a unitary vector

form (Utkin, 1992)

u1 =

{

−βD−1(t) s(t)
‖s(t)‖ , if s(t) 6= 0

0 if s(t) = 0.
∀t ∈ [t0, tf ]

IV. HIERARCHICAL OBSERVER FOR LINEAR TIME

VARIANT SYSTEMS

Now, we are able to state the main contribution of this

paper, i.e., the generalization of the algebraic hierarchical

observer to the time variant case. First, let us fix, without

loss of generality, the value of the design matrix G(t).

G(t) = (C(t)B(t))+

:=
[

(C(t)B(t))T (C(t)B(t))
]−1

(C(t)B(t))T .

Substituting G(t) into the matrix D(·) and Ã(·) lead the

system to the following closed loop form

ẋ(t) = Ã(t)x(t) +B(t)un(t)

+
(

B(t)Ġ(t)C(t) +B(t)G(t)C(t)A(t)
)

x̂(t),

y(t) = C(t)x(t), x(t0) = x0.

(8)

Now, let us recall assumption A3 and assume the pair

(Ã(t), C(t)) is observable(Rugh, 1993; Kratz and Lieb-

scher, 1998), then the observability matrix (3) with A(t) =
Ã(t) is well defined with observability index l = max{c, o}
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and has rank equal to n. The main idea of the observer

is to recover step by step the vectors f(t) = Ol(t)x(t)
for all t ∈ [t0, tf ]. Note that in order to reconstruct the

state x(t) we only need to solve the set of algebraic

equations f(t) = Ol(t)x(t). Also observe that the time

variant observability matrix under consideration contains

several derivatives. We assume that all this derivatives can

be computed analytically. If that was not the case, then it is

possible to use a suitable differentiator but that would affect

the convergence properties of the proposed observer. Before

design the hierarchical observer we need a start point that

would help us to find some useful bounds and dynamics.

Let us design an auxiliary observer that do not converge

since the initial time. This observer should be design so

that the dynamical error between the original system (7) and

this auxiliary observer is stable. Let assume the following

dynamical system

˙̃x(t) = Ã(t)x̃(t) +Bu0

+
(

B(t)Ġ(t)C(t) +B(t)G(t)C(t)A(t)
)

x̂(t)

+K(t) (y(t)− C(t)x̃(t)) , x̃(t0) = C+(t0)y(t0)

where K(t) must be designed such that the dynamical

observation error

ṙ(t) =
(

Ã(t)−K(t)C(t)
)

r(t) = Â(t)r(t), r(t0) = 0,

with r(t) = x(t)− x̃(t); is exponentially stable.

Remark 4.1: Note that this dynamic system is any con-

ventional observer. In the literature there are many method-

ologies that allow us to design the gain K assuring ex-

ponential stability. We proposed the use of a Kalman–

Bucy Filter (Kalman and Bucy, 1961; Kwakernaak and

Sivan, 1972; Chen and Kao, 1997).

If K(t) is designed such that the error is exponentially

stable, there exist constants ψ, η such that

‖r(t)‖ ≤ ψe−η(t−t0)‖r(t0)‖ ≤ ψe−η(t−t0) (‖µ+ x̃(t0)‖) .

A. Algebraic Hierarchical Observer Form

The main idea in the step by step observers is the

reconstruction of the output and its derivatives, so this allow

us to reconstruct the state. To fulfil this requirement we need

to recover the vectors Ni(t)x(t), i = 1, . . . , l − 1 using an

algebraic hierarchical observer for the time variant case.

The observer design is given by the following theorem.

Theorem 4.1: If the auxiliary state vector xak , for all k =
1, . . . , l − 1 are designed as

ẋak = Ã(t)x̃(t) +B(t) (un(t)

+
(

G(t)C(t)A(t) + Ġ(t)C(t)
)

x̂(t)
)

+ Lk(t) (Nk−1(t)Lk(t))
−1 (vk(t)

+Ṅk−1(t)(x̃(t)− xak)
)

;

(9)

where Li(t) ∈ R
n×p is a design matrix such that

det (Ni−1(t)Li(t)) 6= 0, and the initial conditions should

satisfy

C(t0)xa1(t0) = y(t0),

and

Nk−1(t0)x̃(t0) + vk−1eq
(t0) = Nk−1(t0)xak(t0).

Moreover the variable sk are designed as

s1(y(t), xa1(t)) = y(t)− C(t)xa1(t) (10)

and

sk(y(t), xak(t)) = Nk−1(t)x̃(t) + vk−1eq
(t)

−Nk−1(t)xak(t),
(11)

for 1 < k < l− 1. Then for all t ∈ [t0, tf ]

vkeq
(t) = Nk(t) (x(t) − x̃(t)) and k = 1 . . . l− 1

and it is possible to reconstruct completely all the vector

functions Ni(t)x(t), i = 1, . . . , l − 1.

Proof: In order to recover the first vector N1x(t),
we need the auxiliary state vector xa1 governed by (9) with

k = 1, where xa1(t0) satisfies C(t0)xa1(t0) = y(t0). Using

a sliding variable s1 ∈ R
p defined by (10) we have that the

dynamics of the sliding surface are ruled by

ṡ1(y(t), xa1(t)) =
(

C(t)Ã(t) + Ċ(t)
)

(x(t)− x̃(t))

− v1(t)

= N1(t) (x(t)− x̃(t))− v1(t),

with v1(t) defined as

v1(t) =

{

M1(t)
s1(t)

‖s1(t)‖
if s1(t) 6= 0

0 if s1(t) = 0
, ∀t ∈ [t0, tf ].

Here the scalar gain M1 should satisfy the condition

‖N1(t)‖‖x(t)− x̃(t)‖ ≤ ‖Ω‖‖x(t)− x̃(t)‖ < M1(t);

where Ω1 = max
t∈[t0,tf ]

{N1(t)}. In order to assure exponential

stability, this gain can be choose as

M1(t) = ‖Ω1(t)‖ψe
−η(t−t0) (‖µ+ x̃(t0)‖) .

Repeating the same stability proof as in section 4, we get

s1(·) = ṡ1(·) = 0, ∀t ≥ t0. Thus, in view of (10), we have

C(t)x(t) = C(t)xa1(t)

and the equivalent output injection is

v1eq (t) = N1(t) (x(t)− x̃(t)) , ∀t ∈ [t0, tf ].

Thus, N1(t)x(t) is recovered by means of the following

representation

N1(t)x(t) = N1(t)x̃(t) + v1eq (t), ∀t ∈ [t0, tf ].

Thus, following this same procedure we have that the

dynamics of the auxiliary state xak(t) at the k-th level is

governed by (9) where xak(t0) satisfies Nk−1(t0)x̃(t0) +
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vk−1eq
(t0) = Nk−1(t0)xak(t0). For the variable sk ∈ R

p

defined by (11) we have

ṡk(y(t), xak(t)) = Nk(t) (x(t)− x̃(t))− vk(t),

with vk(t) defined as

vk(t) =

{

Mk(t)
sk(t)

‖sk(t)‖
if sk(t) 6= 0

0 if sk(t) = 0
, ∀t ∈ [t0, tf ]

Here the scalar gain Mk should satisfy the condition

‖Nk(t)‖‖x(t)− x̃(t)‖ ≤ ‖Ωk(t)‖‖x(t)− x̃(t)‖ < Mk(t)

where Ωk = max
t∈[t0,tf ]

{Nk(t)}. In order to assure exponential

stability, the gain matrix Mk can be chosen as

Mk(t) = ‖Ωk(t)‖ψe
−η(t−t0) (‖µ+ x̃(t0)‖) ,

as in the former cases and using a Lyapunov stability test

(Section 4), we get sk(·) = ṡk(·) = 0, ∀t ≥ t0, and the

equivalent output injection is

vkeq
(t) = Nk(t) (x(t) − x̃(t)) , ∀t ∈ [t0, tf ]

and the vector Nk(t)x(t) can be recovered by means of the

equality:

Nk(t)x(t) = Nk(t)x̃(t) + vkeq
(t), ∀t ∈ [t0, tf ].

Following the procedure presented in theorem 1, we can

reconstruct the vector

Ol(t)x(t) = Ol(t)x̃(t) + veq(t), ∀t ∈ [t0, tf ],

where

veq(t) =















C(t)xa1(t)− C(t)x̃(t)
v1eq (t)
v2eq (t)

...

vl−1eq (t)















∈ R
p.

Then, we have reconstructed the output and its l time-

derivatives. Since the pair (Ã, C) is observable. The pseu-

doinverse of Ol is well defined and the state can be

recovered by means of the equation

x(t) = x̃(t) +O+
l (t)veq(t), ∀t ∈ [t0, tf ]. (12)

Then the Hierarchical ISM observer is suggested as

x̂(t) = x̃(t) +O+
l (t)veq(t), ∀t ∈ [t0, tf ]. (13)

Remark 4.2: Note that in the time invariant case the

proposed algebraic hierarchical observer is equivalent to the

one presented in (Bejarano et al., 2007)

Under the assumptions of this paper, and assuming the ideal

output integral sliding mode exists, the following identity

holds: x̂(t) ≡ x(t), for all t ∈ [t0, tf ]. The proposed sliding

mode observer needs a low-pass filter in order to reconstruct

the equivalent output injection veq from the high frequency

signal vk(t). Similar to (Utkin, 1992), we consider a first

order low-pass filter where the filtered signal vkav
(t) would

approximate vkeq
(t), i.e.

vkav
(s)

vk(s)
=

K

τs + 1
, (14)

where τ is the time constant of the filter and K is the filter

gain. (see (Utkin, 1992) for details). Then, we can follow,

the algorithm proposed in (Bejarano et al., 2007) and the

realization of the observer (13) takes the form

x̂(t) = x̃(t) +Ol(t)
+(t)vav(t), ∀t ∈ [t0, tf ],

vav =















C(t)xa1(t)− C(t)x̃(t)
v1av

(t)
v2av

(t)
...

vl−1av
(t)















∈ R
p.

(15)

V. ACADEMIC EXAMPLE

In order to show the effectiveness of the proposed ap-

proach, let us consider a matrix uncertain linear time variant

system of the form

ẋ(t) =

[

−1− e−t 0
1 + e−t −1− e−t

]

x(t)

+

[

1
1

]

(u(t) + φ(x, t)) ,

y(t) =

[

1 + e−2t 1
1 1 + e−2t

]

x(t).

in the time interval t ∈ [0, 5]. Assume that the state is not

available and that the nominal control input is an unitary

step. The unknown disturbance/uncertainty has the form

φ(x, t) = sin2(t)
cos(4πt)+2 . Note that the observability index of

this example system is 2. Applying the proposed approach

we obtain the behavior show in Fig 1. In Fig.2 we show

a comparative behavior of the Observation Mean Square

Error (OMSE) for different values of τ . Note that the error

convergence rate is inversely proportional to the value of τ .

Moreover, the proposed observer is able to reconstruct the

state since the first moment.

VI. CONCLUDING REMARKS

In this paper a framework to design an algebraic hierar-

chical observer based on integral sliding mode control for

linear time variant systems is presented. This framework

represent a generalization of the algebraic hierarchical ob-

server proposed by (Bejarano et al., 2007) to the time vari-

ant case. The time variant output integral sliding mode does

not have reaching phase, ensuring complete compensation

of the dynamics affecting the system since initial moment,

and it is equivalent to the output integral sliding mode when

the matrices are invariant in time. The advantage of the

proposed algebraic hierarchical observer is that it assures

full reconstruction of the time variant state since the initial

time, but the accuracy of the observed state depends on

the filter’s sampling step on the level of the noise, i.e.,
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Figure 1. Output Integral Sliding Mode
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Figure 2. Observation Mean Square Error for different values of τ and
K = 1e− 4

if the sampling step goes to zero, the convergence time

going to zero; as in the invariant case. The applicability

of the proposed approach was proved using an illustrative

simulation.
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