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Abstract— In this work we propose a proportional deriva-
tive controller with a robust uncertain estimator in order to
compensate unknown bounded perturbations for the task of
tracking a DC servomechanism system, which consists of a
pendulum actuated by a DC motor subject to a sustained
variable but bounded disturbance, both the velocity of the
pendulum and the perturbation are unknown, an extended
version of a super-twisting sliding-mode observer is used
to estimate them in a finite time. Numerical simulation
were included to assesses the effectiveness of the closed-loop
system.

I. INTRODUCTION

DC-motor pendulum systems(DCMP)are extensively
used as test bed to verify the performance of control
techniques. Particularly, the second order model associated
is an attractive benchmark for testing techniques like
sliding mode control, PID-control, adaptive control, robust
control, parameters identification, and many others. The
reason behind it is that is equivalent to the core of more
complex systems, like several actually used industry robots
((J. y W., 1991; Sira-Ramirez y Agrawal, 2004)). This
topic has been the seed of many interesting works, as is
the case of the paper of (Hernandez y Sira-Ramirez, 2002).
There, the Generalized Proportional-Integral controller and
position measurements, were applied to solve the tracking
control problem for a linear version of the DCMP. The
authors in (Davila et al., 2005) dealt with the regula-
tion problem, using the sliding-mode super-twisting based
observer (STBO) method, in conjunction with a PD-
controller. In (Davila et al., 2006), an interesting solution
to control the DCMP, using the STBO algorithm, com-
bined with an identification scheme can be found. Finally,
we mention two exciting papers, (Davila et al., 2006) and
(Garrido, 2011); the first dealt with the on-line estimation
of a continuous-time model of the DCMP, using a closed-
loop input error approach. The other paper, presents a
method for the identification of the DCMP parameters; the
method consists of a discrete-time Least Squares algorithm
and a parameterizations using the Operational Calculus.
For a detailed review we suggest to the interested reader on
control of second-order mechanical manipulator the works
(Bartolini et al., 2003; Bartolini et al., 1999; Rafimanzelat
y Yadanpanah, 2004) and the reference therein.

From the mentioned works, we can say that the design
of an smooth output-feedback stabilization technique for
an uncertain and perturbed DC-motor pendulum, or a sec-
ond degree manipulator, as pointed out in the book (Dixon
y Dawson, 2004; Krstic et al., 1995), is a very challenge
control problem. In broad terms, what makes this problem

a difficult one, is that not having information about the
time derivative of the uncertainty, as was mentioned in
(Ortega, 2002), is impossible to completely compensate it.
However, applying a variable structure controller with slid-
ing mode (SMC), allows to identify on line the unknown
perturbation and compensate it, under certain considera-
tions related to the perturbation bound. We should not
forget that the ideas of compensate and cancel perturbation
has been previously used on Active Disturbance Rejection
(Zhiqiang Gao, 2001; Qing Zheng, 2007).

We developed in this work a smooth controller for
output feedback trajectory tracking in a DC uncertain
servomechanism. To this end, a proportional derivative
controller and a robust uncertain estimator that throws out,
in finite time, the disturbance by means of compensations.
The pendulum non available velocity and the perturbation
are, both, recovered using an extended version of the
super-twisting sliding-mode observer. The Separation prin-
ciple was applied to design the control strategy because
of the observer finite time convergence and the uncertain
term uniform boundedness. The convergence analysis was
based on the previous works of (Davila et al., 2006; Levant
y Fridman, 2002; Levant, 2003a). The remaining of this
work continues with Section 2, where the model of the
DC-motor pendulum system and the problem statement
are presented. In Section 3 the control strategy and the
corresponding convergence analysis are developed. The
numerical simulations that assesses the effectiveness of
the obtained results are presented in Section 4, while the
conclusions are presented in Section 5.

II. SYSTEM DYNAMICS MODEL

Consider an actuated second order DC-motor pendulum,
composed by a servomotor attached with a pendulum, a
servo-amplifier and a position sensor. The corresponding
control model of this system has the following form:

ẍ =
1

J
(−fdẋ− fcsign[ẋ] + η − gmL sinx+ kuτ) (1)

where x and ẋ are the pendular angle position and
the pendular angle velocity, respectively; while, τ is the
control input voltage. The parameters m, L, and g are
respectively, the pendulum mass, the pendulum arm length
and the gravity constant; the coefficient fd is the pendulum
viscous friction, and the coefficient fc is the Coulomb
friction coefficient. The parameter J stands for the system
total inertia, that is composed by the arm and the rotor
inertias; the parameter ku is related to the amplifier gain
and to the constant motor torque. Finally, η is the unknown
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and bounded, perturbation which may account for model
uncertainties and external disturbances.

We remark that in actual applications of this model,
the perturbation η and the gravitational pair are both
unknown. It is the case, for instance, when the pendulum
mass and the angle position are changed. Also, the actual
velocity is not available or unmeasurable. On the other
hand, the torque produced by the DC-motor does not
responds to switching actions, like the ones produced when
using the control sliding model. These arguments suggest
us to use in the real world a continuous and smooth
control action, instead of using the VSS control strategy.
In this context, we desire to solve the regulation pendulum
position problem, assuming that we do not know, both, the
velocity and the dynamics of the perturbation, defined as:

w(x, t) =
1

J
(−fcsign[ẋ] + η − gmL sinx), (2)

which is a bounded function. In order to simplify the
forthcoming developments, the system (1) is re-written in
its state space form, as:

ẋ1 = x2;
ẋ2 = −f0x2 + w(x, t) + u;
y = x1

(3)

where, x1 = x, and, x2 = ẋ, and

f0 = fd
J ; u = ku

J τ ; (4)

Problem statement: Consider the uncertain nonlinear
system (3) and the corresponding state, x1, regarded as
the measured system output, where the perturbation is
uniformly bounded, by

|w(x, t)| ≤ 1

J
(η +

gmL

J
+ f c) ≤ δ0. (5)

Then, the control goal is that the angular pendular position
tracks a given smooth reference trajectory xr(t). In other
words, we want to control the pendular angular position
x towards a pre-specified desired trajectory xr(t).

Motivation: It is important to notice that the system
(3) can be seen as a general electro-mechanical system,
because a wide range of robots admit this configuration.
in consequence the propose solution can be applied to
more complex configurations, like a manipulator robot
controller.

III. THE CONTROL STRATEGY

In this section we develop and introduce a control
scheme that completely compensates de unknown bounded
perturbation, by means of an online identification proce-
dure, in conjunction with a traditionally PD controller. We
pointed out that the proposed control scheme will allows us
to accurately estimate, simultaneously, both the unknown
DCMP angular velocity and the bounded perturbation.
To this end, a high-order exact-differentiation filter, based
on a variable structure system (proposed in (Davila et
al., 2006; Levant y Fridman, 2002; Levant, 2003a)) will be

deploy. Because we will use an exact differentiator, with
finite time convergence, the separation principle will be
trivially satisfied, reducing considerably the corresponding
stability analysis.

A. State Observation - Perturbation Identification

We underscore two ideas: The first, introduced in
(Levant, 2003a), says that it is possible to compute the
time high-order derivative of a signal with an accuracy de-
pendant on the numerical integration step. In our particular
case, we computed the first and the second time derivatives
of the pendulum angular position, with high accuracy. The
other idea is based on the equivalent output injection, sug-
gested in (Utkin, 1992; Fridman, 1999), which establish
that it is possible to assume that the equivalent output
injection is equal to the output of the filter.

Let us introduce the following state estimator for the
states of the system (3):

ż =

[
0 1
0 −f0

]
z +

[
0
1

]
u+

[
L1

L2

]
(y − zy)

zy =
[
1 0

]
z

x̂ = z +K−1
2v(y − zy)

(6)

where

K =

[
1 0

−L1 1

]
(7)

and the truncate vector 2v(y − zy) is obtained from the
vector v(y − zy) = [v1, v2, v3]

T , whose components are
computed using the high-order exact differentiator

(Levant, 2003b) as:

v̇1 = −λ1M
1/3|v1 − (y − zy)|2/3sign (v1 − (y − zy))

v̇1 = v̇1 + v2
v̇2 = −λ2M

1/2|v2 − v̇1|1/2sign (v2 − v̇1) + v3
v̇3 = −λ3M sign (v3 − v̇2)

(8)
with the gains λ1 = 2, λ2 = 1.5, λ3 = 1.1 and
M > δ0. Using the equivalent output injection concept,
a disturbance estimated can be obtained from:

ŵ = v3 + L2v1 + f0v2 (9)

Theorem 3.1: Under condition (2) and, with a proper
selection of the gains λ1, λ2, λ3 and M . The observer
(6)-(8), provides an exact estimated of the states (x1, x2)
after a finite time transient.

The proof of this theorem can be found in (Fridman et
al., 2007).

Lemma 3.2: Under conditions of Theorem III-A, the
estimation algorithm (9) provides after a finite time tran-
sient an exact estimated of the disturbance w in system
(3).
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B. Robust controller and convergence analysis
Under the conditions given in Theorem III-A, it is

ensured that, after a finite-time transient, the estimated
state variables (x̂1, x̂2), converge to the corresponding
actual values. Notice that, the structure of the observer
does not vary with respect to the control law. That is to say,
the separation principle is trivially satisfied. Therefore, the
stability analysis of the control system composed by the
plant (3) and the observer (6)-(8) is equivalent to examine
the stability of the system (3). Henceforth. without loos
of generality, we study the convergence of the system (3)
when x̂2 = x2.

C. Output feedback controller
First of all, Let us propose the following control law:

u =
1

ku
[−ŵ − kp(x1 − xr)− kd(x2 − ẋr) + f0x2 + ẍr] ,

(10)
where, kp > 0, and, kd > 0, are positive constants; xr,
is the desired angular position and, x2 is the value of
the velocity obtained from (6)-(8), ŵ is the perturbation
estimated (9).

Substituting (10) into (3), we can obtain the tracking as:

ẋ1r = x2r

ẋ2r = −kpx1r − kdx2r
(11)

where, x1r = x1 − xr, and, x2r = x2 − ẋ are the state
tracking errors.

The values of the gains kp and kd are chosen such that
the roots of the characteristic polynomial s2 + kds + kp
belongs to the open left complex semi-plane. Notice that,
the damping coefficient of the controlled system is given
by the relation ζ = kd

2
√

kp

.

IV. NUMERICAL SIMULATIONS

In order to asses effectiveness we designed some numer-
ical experiments, whose results we present in this section.
The choosen physical parameters are the ones obtained
from the actually manufactured device in the Automatic
Control Laboratory of the CINVESTAV-IPN, by Garrido
and Miranda (Garrido, 2011), whic are:

f0 = 0.1; f1 = 1.3; η
J = 0.84; gmL

J = 14.03;
ku

J = 5.4;
(12)

Also an external perturbation , η, were include to prove
the robustness of the proposed controller. This perturbation
was defined as:

η

J
= 0.84 + 0.2 sin

(
t

5

)
. (13)

The smooth function, xr = sin(t/2), was selected to
be trackes as the control goal, where their corresponding
parameters were chosen, as:

L1 = 49/10; L2 = 551/100; M = 1000; kp = 4000;
kd = 130;

(14)

The eigenvalues of, (A − LC), provided by these pa-
rameters, are, −3, −2. The damping coefficient is 1. In
order to compensate the discontinuous effect of the dry
friction, both the differentiator and the controller gains
were selected large enough. The initial conditions were
chosen as, x1 = −1.57[rad], and, x2 = 0[rad/sec]; and the
nonlinear observer were set at the origin. To perform the
simulation, the Euler method, with a sampling integration
interval of, 1× 10−4[sec], was used.

The closed-loop response of the whole state is shown
in figure 1; it can be seen that the proposed controller
effectively makes the pendulum to follow the reference
signal, xr = sin(t/2), after one second elapsed. We also
see that after one second elapsed the velocity state tracks
the defined reference. The corresponding state estimation
error is presented in figure 2; we can see that accuracy
state reconstruction is in the order 1× 10−4.

In figure 3 the tracking position and the tracking error
are displayed; there we can see that, after controller
convergence, the reference signal is tracking with an error
of order 1×10−4. Finally, in figure 4 we show the control
signal and the disturbance.

V. CONCLUSIONS

We solved the trajectory tracking and stabilization
problems for an uncertain and continuously perturbed
DC servomechanism. This perturbation was unknown but
bounded. The solution was accomplished by an output
feedback control scheme. We used a derivative controller
with a robust uncertain estimator, which compensates
the perturbation by using a version of the super-twisting
sliding-mode observer.

The application of the Separation principle was justified
because the observer convergence is finite time and the
uncertain term is uniformly bonded.

The performance of our controller was assessed with
some numerical simulations; we claim with the results that
the goal was accomplished.
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Figura 1. State estimation of DC servomechanism
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Figura 2. State estimation error
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Figura 3. Tracking of DC servomechanism
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