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Abstract— In this work, it is presented a control law for an
internal combustion engine that takes into account the actuator
dynamics. The internal combustion engine is controlled by
means of an adaptive backstepping algorithm. Then, the
control input signal to the engine (throttle angle) is used
as a reference signal for the actuator which is driven by a
direct current motor. A higher-order sliding mode controller
is applied to the actuator in order that it can track the
control input signal for finally regulating the velocity of the
combustion engine.
keywords: sliding modes, adaptive backstepping, internal
combustion engine.

I. INTRODUCTION

The automotive industry is constantly pursuing to satisfy

the end-user demand of fuel efficient engines along with

free running of the vehicle. Moreover, almost every modern

car is equipped with on-board diagnostic software in their

electronic control units (ECUs) to control and monitor the

engine operations.

Therefore several researchers are focusing in solving the

problem of designing feedback controllers for the major

subsystem of a vehicle that enables further improvement

via application of modern speed control strategies in a

combustion engine with an electrically driven throttle.

The engine speed control problem has been considered

in several publications (Moskwa and Hedrick, 1987),

(Guzzella and Onder, 2010), (Ahmed and Bhatti, 2010).

Usually, these controllers are based on mean value

engine models (MVEMs) (Hendricks and Sorenson, 1990b)

because it can describe the behavior of spark ignition

(SI) engines (Hendricks and Vesterholm, 1992), (Hendricks

and Sorenson, 1990a). The MVEMs models describe the

time development of the most important measurable engine

variables (or states) on time scales larger that an engine

cycle (Hendricks, 1989), (Rajamani, 2012). The states of

an SI engine are usually the fuel film flow or mass, the

crank shaft speed and manifold pressure, each described

with differential equations driven by control inputs such

as the injected fuel flow, spark advance and throttle angle,

respectively.

The sliding modes (SM) technique has been widely

discussed and used in large number of works. This

algorithm exhibits high gain and provides to the closed-

loop system some invariance properties such as external

disturbance rejection and robustness to plant parametric

variations, and, moreover, the order reduction (Drakunov

and Utkin, 1992), (Utkin, 1993). Due to these advantages

and simplicity of the methodology, this technique is

largely implemented to solve various control problems. The

application of the SM in the automotive area has taken much

importance, (Loukianov et al., 1997), (Shraim et al., 2008),

(Imine et al., 2011), (Delprat and Ferreira de Loza, 2012),

due to the characteristics that present SM algorithm.

In this work, a novel control scheme is presented to

regulate the speed of a combustion engine driven by

a direct current (DC) motor that acts as an actuator.

The controller design is based on adaptive backstepping

approach (Krstic et al., 1995) combined with high-order

SM (HOSM) algorithms (Levant., 2003). The particular

structure of MVEMs allows the adaptive backstepping

control technique to be applied in order to calculate the

virtual control input signal to the engine (throttle angle).

This signal is used as a reference signal for the actuator to

formulate an adaptive sliding manifold. Then, the HOSM

algorithm is applied to the actuator in order to achieve finite

time convergence of the closed-loop system state vector

to the designed sliding manifold, and regulate the throttle

position of the combustion engine. As result, the engine

speed tracking error asymptotically tends to zero.

The remaining of this work is organized as follows. In

Section II, the mathematical models of MVEMs and DC

actuator are presented. Section III establishes the control

design to be tackled as the proposed solution to the

considered problem. A simulation study is carried on in

Section IV, and finally some comments conclude the work

in Section V.

II. MEAN VALUE ENGINE MODELS

In this section the mathematical model of the Mean Value

Engine Model (MVEM) of Spark Ignition (SI) is presented

(Hendricks and Luther, 2001).
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II-A. The crank shaft speed

The crank shaft state equation is derived using straight

forward energy conservation considerations. Energy is

inserted into the crank shaft via the fuel flow. In order to

avoid modeling the cooling and exhaust system losses, the

thermal efficiency of the engine is inserted as a multiplier of

the fuel mass flow. Losses in pumping and friction dissipate

rotational energy while some of the energy goes into the

load. Physically this is expressed as a conservation law: the

rate of a change of the crank shaft rotational kinetic energy

is equal to sum of the power available to accelerate the

crank shaft and that of the load:

ṅe = − (Pf + Pp + Pb)

Jene
+
Huηiṁf

Jene
(1)

where ne is the crank shaft speed, Je is the moment of

inertia in the rotating parts of the engine, Pf , Pp and Pb are

the power lost to the friction, pumping losses and the load,

respectively, Hu is the fuel burn value, ηi is the thermal

efficiency, and ṁf is the fuel mass flow.

The loss functions Pf and Pp form the load input to the

engine and can be implemented to match a desired operating

scenario. They are usually regressions based on data from

engine measurements and can be modeled by the following

regressions functions:

Pf = 0,0135n3
e + 0,2720n2

e + 1,6730ne

Pp = nePm(0,2060ne − 0,9690).
(2)

where Pm is the pressure in the intake manifold. It has been

found convenient to express the load power as the function:

Pb = kbn
3
e (3)

where kb is the loading parameter. It is ajusted in such a

way than the engine is loaded to the desired power or torque

level at a given operating point.

The thermal efficiency ηi is also a regression and can be

modeled by the following polynomial:

ηi = 0,55(1− 0,39ne
−0,36)(0,82 + 0,52Pm − 0,39Pm

2).
(4)

II-B. The fuel mass flow rate

The fuel mass flow rate ṁf is typically determined by a

fuel injection control system which attempts to maintain

a stoichiometric air fuel ratio. It is assumed this ratio

is successfully maintained in the cylinder. Thus, the fuel

mass flow rate ṁf is related to the outflow from the

intake manifold into the cylinders of the engine as follows

(Rajamani, 2012):

ṁf =
ṁao

λLth
(5)

where ṁao is the air mass flow rate out of the intake

manifold and into the cylinder, Lth is the stoichiometric

air/fuel mass ratio for the Fuel and λ is the air/fuel

equivalence ratio.

II-C. Manifold Pressure Equation

In the derivation of the manifold pressure state equation

the common procedure is to use the conservation of air mass

in the intake manifold:

ṁm = ṁai − ṁao (6)

where ṁm is the air mass flow in the intake manifold, ṁai

and ṁao represent mass flow rate in and out of the intake

manifold i.e. through the throttle valve and into the cylinder

respectively.

The pressure in the intake manifold Pm can be related to the

air mass in the manifold mm using the ideal gas equation

PmVm = mmRTm (7)

where R is the ideal gas constant, Tm is the intake manifold

temperature and Vm is the intake manifold volume.

Taking time derivates of (7) and using (6), the intake

manifold pressure equation is obtained of the form

Ṗm =
RTm
Vm

(ṁai − ṁao). (8)

The expressions forms of ṁai and ṁao are described in the

following Subsections.

II-C.1. Port air mass flow: The air mass flow at the

intake port of the engine, can be obtained from the speed-

density equation (Hendricks and Luther, 2001) as

ṁao =

√

Tm
Ta

Vd
120RTm

(evPm)ne. (9)

the volumetric efficiency ev can be described by the

following simple equation taken from (Hendricks et al.,

1996)

evPm = siPm − yi (10)

where Ta is the ambient temperature, Vd is the engine

displacement, the manifold pressure slope si is slightly less

than 1 and the manifold pressure intercept yi is close to

0,10; they are always positive and depend mostly on the

crank shaft speed. Moreover, they should not change much

over the range operating from one engine to another except

for those which are highly tuned. The form of equation

(10) has been known phenomenologically at Ford for many

years but in (Hendricks et al., 1996) this equation has been

derived from physical considerations. This means that it can

be rapidly applied to many different engines with basically

only a knowledge of a few physical constants and this is

the advantage of the derivation above.

Using now (10) the speed-density equation (9) becomes

ṁao =

√

Tm
Ta

Vd
120RTm

(siPm + yi)ne. (11)
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II-C.2. Throttle air mass flow: The second important

equation is the manifold pressure state equation which is

used to describe the air mass flow past the throttle plate.

This part of the model based on the isentropic flow equation

for a converging-diverging nozzle, is given by (Hendricks

and Luther, 2001)

ṁai = ṁai1
Pa√
Tm

β1(α)β2(Pr) + ṁai0 (12)

where Pa is the ambient pressure, ṁai1 and ṁai0 are

constants, α is the throttle angle and β1(α) is the throttle

plate angle dependency which can be described by the

following function as an approximation to the normalized

open area:

β1(α) = 1− cos(α)− α0

2

2
(13)

where α0 is the fully closed throttle plate angle (radians).

The function β1(α) serves as the function of an area

dependent discharge coefficient and β2(Pr) is the isentropic

flow expression:

β2(Pr) =











1 Pr < Pc
√

1−
(

Pr−Pc

1−Pc

)

Pc ≤ Pr
(14)

where Pr = Pm/Pa, and Pc = 0,4125 is the critical

pressure (turbulent flow), and this function is differentiable

to piecewise and there is not rapid commutation in the point

switch.

II-D. Engine motor model

Using (1-14), the MVEMs state system is obtained of the

following form:

ṅe = −f1(ne, Pm) + b1(ne, Pm)Pm

Ṗm =
RTm
Vm

(f2(n, Pm) + b2(Pm)β1(α))
(15)

where

f1(ne, Pm) =
Pf+Pp+Pb

Jene
,

b1(ne, Pm) =

(

Huηi

√
Tm/TaVd

120IRTmλLth

)

( yi

Pm
+ si),

f2(ne, Pm) = ˙mai0 −
√

Tm

Ta

Vd

120RTm
(siPm + yi)ne,

b2(ne, Pm) = ˙mai1
Pa

√

Tm
β2(Pr).

II-E. Actuator model

The DC drive dynamics (Gottlieb, 1994), possesses a

block structure controllable (Loukianov, 1998):

dα

dt
= ωa

dωa

dt
=
ktia − TL

J
dia
dt

=
−Ria − λ0ωa + υa

L

(16)

where α, ωa, ia and υa are the position, speed, current and

voltage, respectively, of the throttle drive, TL is the drive

load torque, J is the moment of inertia, L and R are the

drive inductance and resistance, respectively, and kt and λ0
are the torque and e.m.f. constants, respectively.

II-F. The complete model

A block diagram of the complete closed-loop system is

shown in Fig 1. To satisfy the control objective, which is to

Engine

Engine

Actuator

Actuator
dynamics

s0

ne

Pm

Controller Controller

υa

ner

αr

α

Fig. 1. Block diagram of closed-loop system

force the engine speed ne to track some desired reference

ner, we define the control errors and new state variables as

x1 = ne − ner, x2 = Pm, x3 = α, x4 = ωa, x5 = ia

where ner and αr is the engine speed and throttle position

reference, respectively. Then, using the engine model (15)

and actuator model (16) the complete model system is

presented of the form

ẋ1 = f̄1(x1, ϕ) + b̄1(x1, ϕ)x2

ẋ2 = f̄2(x1, x2) + b̄2(x2)β1(x3)

ẋ3 = x4

ẋ4 = a45x5 − a40TL

ẋ5 = a55x5 − a54x4 + b5υa

(17)

where

f̄1(x1, ϕ) = − Pf+Pb

Je(x1+ner)
+ ṅer + ϕyi,

b̄1(x1, ϕ) = −(
Pp

Je(x1+ner)
− ϕsi),

ϕ =

(

Huηi

√
Tm/TaVd

120JeRTmλLth

)

,

f̄2(x1, x2) = RTm

Vm
( ˙mai0 −

√

Tm

Ta

Vd

120RTm
(six2 + yi)(x1 +

nr)),
b̄2(x2) =

RTm

Vm
( ˙mai1

Pa
√

Tm
β2(x2)),

a45 = kt

J , a40 = 1
J , a54 = λ0

L , a55 = R
L and b5 = 1

L

Assumption H1. The function ϕ is constant on stable

state, that means, its derivative on stable state is zero ϕ̇ = 0
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III. CONTROL DESIGN

In the control design, we consider the thermal efficiency

ηi (4) as an unknown function of the state variables; that

leads to an unknown value of the function ϕ in (17)

III-A. Engine adaptive backstepping controller design

Subsystem (17) has the strict feedback or block

controllable form, and the relative degree of the system with

respect to the tracking error x1 is too high and equal to five.

To solve this problem and estimate the unknown function

ϕ, the combination of the adaptive backstepping technique

(Krstic et al., 1995) and high-order sliding modes algorithm

(Levant., 2003) be will be implemented in order to design,

first, an adaptive sliding manifold, and then the third order

sliding mode algorithm will be implemented to make this

manifold attractive. Defining z1 = x1, which is the output

to be forced to zero and setting ϕ̃ = ϕ− ϕ̂, where ϕ̂ is the

estimate of ϕ, a Lyapunov function candidate is proposed

as

V1 =
1

2
(z21 + γ−1

1 ϕ̃2) (18)

where γ−1
1 is an adaptation gain. The time derivative of

(18) along the trajectories of (17) under Assumption H1 is

calculated of the form

V̇1 = z1ż1 − γ−1
1 ϕ̃ ˙̂ϕ

= z1
(

f̄1(x1, ϕ̂) + b̄1(x1, ϕ̂)x2 + ϕ̃(yi + six2)
)

− γ−1
1 ϕ̃ ˙̂ϕ. (19)

The desired value x2r of the virtual control x2 in the first

block of (17) is selected in order to introduce a desired

dynamics −k1z1:

x2r =
−k1z1 − f̄1(x1, ϕ̂)

b̄1(x1, ϕ̂)
. (20)

with k1 > 0. Now, defining the second error

z2 = x2 − x2r

and substituting (20) in (19) yields

V̇1 = −k1z21 + b̄1(x1, ϕ̂)z1z2 + ϕ̃(yi + six2)z1

− γ−1
1 ϕ̃1

˙̂ϕ1

= −k1z21 + b̄1(x1, ϕ̂)z1z2

+ ϕ̃1((yi + six2)z1 − γ−1
1

˙̂ϕ1).

(21)

Then, defining the tuning function

τ1 = (yi + six2)z1 (22)

the derivative (21) can be rewritten as follows:

V̇1 = −k1z21 + b̄1(x1, ϕ̂)z1z2 + ϕ̃1(τ1 − γ−1
1

˙̂ϕ1). (23)

At the second step, it is formed the following Lyapunov

function candidate:

V2 = V1 +
1

2
z22 . (24)

Taking the time derivative of (24) results in

V̇2= V̇1 + z2ż2 (25)

= V̇1 + z2(f̄2(x1, x2) + b̄2(x2)v(x3)− ẋ2r).

where v(x3) = β1(x3)). To introduce the desired dynamics

−k2z2 for z2, the desired value vr of the virtual control

v(x3) is proposed of the following form:

vr =
−k2z2 − b̄1(x1, ϕ̂)z1 − f̄2(x1, x2) + ẋ2r

b̄2(x2)
(26)

with k2 > 0, where the derivative ẋ2r can be obtained

by means of a robust exact differentiator proposed in

(Levant., 2003).

Setting

z3 = v(x3)− vr (27)

and using (26) in (25) yields

V̇2 = −k1z21 − k2z
2
2 + ρb̄2(x2)z2z3

+ ϕ̃1

(

τ1 − γ−1
1

˙̂ϕ1

)

. (28)

To eliminate the term with ϕ̃1 in (28) the update law can

be determined through the following equation:

˙̂ϕ1 = γ1τ1 (29)

and the equation (28) is reduced to

V̇2 = −k1z21 − k2z
2
2 + b̄2(x2)z2z3. (30)

To calculate angle reference x3r we put z3 = 0, that means

v(x3r) = vr, and using the expression (13), we have

1− cos(x3r)−
α0

2

2
= vr (31)

Thus,the drive reference angle x3r is calculated as

x3r = cos−1

(

1− vr(x3r)−
α2
0

2

)

. (32)

Now the sliding function s0 is formulated as

s0 = x3 − x3r . (33)

Then defining the derivatives

s1 = ṡ0

s2 = ṡ1

system (17) in the new variables can be represented of the

form
{

ż1 = −k1z1 + b̄1(x1, ϕ̂)z2

ż2 = −b̄1(x1, ϕ̂)z1 − k2z2 + s0
(34)











ṡ0 = s1

ṡ1 = s2

ṡ2 = fs(x1, x2, x3, x4, x5)− b2u

(35)

where fs is a continuous function bounded in a admissible

region Ω by

|fs(x1, x2, x3, x4, x5)| ≤ γ0 <∞ (36)

and b2(·) = a45b5.
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III-B. Actuator HOSM controller design

To enforce sliding mode motion on s0 = 0, s1 = 0 and

s2 = 0, we apply the following third-order sliding mode

algorithm (Levant., 2003):

u = −u0sign[ψ2,3(s0, s1, s2)] (37)

ψ2,3(s0, s1, s2) = s2 + β2
(

|s1|3 + |s0|
)1/6

sign
(

s1 + β1|s0|2/3sign(s0)
)

(38)

where u0, β1, and β2 are the control gains. In (Levant.,

2003), it was shown that there exits a set of constants

u0 > 0, β1 > 0 and β2 > 0 such that the state vector

of the closed-loop sub system (35) under the condition (36)

converges in finite time to the third-order SM set

s0 = 0, s1 = 0, s2 = 0. (39)

On the manifold s0 = 0 (33), we have x3 = x3r, and from

(27), (31) and (32) it follows v = vr or z3 = 0. The motion

on the sliding manifold s0 = 0 (33) or z3 = 0 (27) defined

by (34) constrained to

ż1 = −k1z1 + b̄1(x1, ϕ̂)z2

ż2 = −b̄1(x1, ϕ̂)z1 − k2z2.
(40)

And the Lyapunov function derivative V̇2 (30) reduces to

V̇2 = −k1z21 − k2z
2
2 < 0. (41)

If we select the control gains as k1 > 0 and k2 > 0, then

the system (40) will be asymptotically stable, that is the

control errors z1(t) and z2(t) tends to zero as t→ ∞.

The implementation of the proposed third-order SM

controller (37) requires the calculation of the derivatives

s1 and s2. To obtain these derivatives again, a sliding mode

exact robust differentiator can be employed. We use the

second-order robust exact differentiator defined by

ξ̇0 = µ0 µ0 = −δ0|ξ0 − s0|2/3sign(ξ0 − s0) + ξ1

ξ̇1 = µ1 µ1 = −δ1|ξ1 − µ0|1/2sign(ξ1 − µ0) + ξ2

ξ̇2 = −δ2sign(ξ2 − µ1)

(42)

where ξ0, ξ1 and ξ2 are the estimates of the sliding

variable s0 and its derivatives s1 and s2, respectively. In

(Levant., 2003), it was shown that there exists δi > 0,

i = 0, 1, 2, such that the estimates ξ0, ξ1 and ξ2 converge

to the real variables s0, s1 and s2, respectively, in finite

time. These estimates are then implemented in controller

(37) instead of the real variables.

IV. SIMULATIONS

In this section we verify the performance of the proposed

control scheme by means of numeric simulations.

We considerer a MVEMs with the following nominal

parameters (Hendricks et al., 1996): Vd = 1,275 L, R =
0,00287, Vm = 0,0017, I = 480(2π/60)2, Hu = 4300,

Lth = 14,67, λ = 1,0, Tm = 293, Ta = 293, Pc = 0,4125,

Pa = 1,013, Pr = Pm/Pa, ṁai1 = 5,9403, ṁai0 = 0,

si = 0,961, yi = −0,07. The velocity reference signal

increases from 0,66 to 3 krpm in the first 8 s and then,

it remains constant at 3 krpm ∈ (8, 15] s, again increases

from 3 krpm to 4 krpm ∈ [15, 20] s, and finally remains

constant in 4 krpm ∈ [20, 30] s. The velocity of engine

is shown in figure 2, where can be appreciated a good

tracking performance with adapted parameters present in the

controller. The tracking of the throttle position is presented

in figure 3, we observe the acceptable performance that

present this signal. And finally in the figure 4 the pressure

generated for the engine is shown, similar to the before

figures this has a good performance.
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V. CONCLUSIONS

In this work a controller for internal combustion engine

is designed in the presence of the known thermal efficiency.

The control design is based on a combination of the
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adaptive backstepping and sliding mode control techniques.

The adaptive backstepping is used to generate the adaptive

sliding manifold on which the engine tracking error

asymptotically tends to zero. The high-order sliding mode

algorithm achieves the designed manifold be finite-time

attractive. This fact is verified by numerical simulations.
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