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Resumen— This paper focusses on applications of neural
networks for forecasting in photovoltaic arrays. The Particle
Swarm Optimization technique is applied for tuning the
parameters of Extended Kalman Filter training algorithm
for data modeling in smart grids. The length of the
regression vector is determined using the Cao methodology.
The applicability of this architecture is illustrated via
simulation using real data values for Photovoltaic modules.
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I. INTRODUCTION

The limited existing reserves of fossil fuels and the

harmful emissions associated with them have lead to an

increased focus on renewable energy applications in recent

years. The first steps on integrating renewable energy

sources began with hybrid wind and solar systems as

complementing sources and as solution for rural applic-

ations and weak grid interconnections. Further research

have implemented hybrid systems including several small

scale renewable energy sources as solar thermal, biomass,

fuel cells and tidal power. Since the production costs for

photovoltaic and wind turbine applications have consider-

ably reduced, they have become the primary choice for

hybrid energy generation systems.

Photovoltaic systems convert light energy from the sun

into electrical energy. The most basic system includes

photovoltaic panels, wiring lines, inverter and system

electrical energy storage. It typically includes a monit-

oring system to measure and record weather data and

system performance. In order to predict the generated

power from an array of PV modules, several author have

proposed the use of mathematical models to characterize

photovoltaic modules based on electrical circuits with

different topologies which model both photocurrent source

and losses through connections in the system elements.

Many of these models are based on complex mathematical

expressions to estimate the behavior with the solar cells

and the parameters used in these models are determined

experimentally or extraction techniques using analytical or

numerical (Sandrolini et al, 2010).

Through the use of predictive models, it is possible to

calculate the power output of photovoltaic systems when a

set of entries is added to the system weather. The data used

in predictive models estimate the system output parameters

such as DC power, AC power and module temperature.

Predictive models applied to PV can be used in several

ways. They can be used before purchasing a full system

to compare the desired output of a particular system with

other potential designs. They can also be used to determine

whether a system works as expected, allowing operators to

determine maintenance schedules. Finally can be used to

predict the performance of an existing system and calculate

the expected return.

Most available predictive schemes for photovoltaic sys-

tems apply algebraic formulas to estimate and model the

performance of each system component, then using dock-

ing models for components the entire system performance

is estimated. Some models use relatively simple formulas

and typical system parameters for estimating the perform-

ance (Marion and Anderberg, 2000). Other models use

data from the specification sheets to generate component

parameters (De Soto et al, 2000). More complex models

require specific parameters are generated through rigorous

testing of the components of photovoltaic systems (King

et al , 2004),(King et al , 2007).

Artificial Neural Networks (ANN) have been considered

as a convenient analysis tool for energy systems forecast-

ing and control applications due to the simplicity of the

model and the accuracy of the results for nonlinear and

stochastic models and have been implemented in several

practical applications (Senjyu et al, 2006). ANN have

been previously implemented for short term predictions,

outperforming other classical methods due to the fast

learning algorithm which enables on-line implementations

and the versatility to vary the prediction horizon . Due to

their nonlinear modeling characteristics, neural networks

have been successful applied in control systems, pattern

classification, pattern recognition, and time series forecast-

ing problems. There are several previous works that use

artificial neural networks to predict time series for energy

generation systems (Bonanno et al, 2012), (Amoudi and

Zang, 2000).

In (Bonanno, 2012) the authors investigated the appli-

cation of radial basis neural networks for prediction of

the electrical characteristics of a PV module taking into
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account the change in all parameters at different operating

conditions. The applied inputs parameters considered for

training were irradiation and module temperature. For the

training of the network is employed a large amount of

experimental data and the error backpropagation algorithm.

The results are validated by simulations.

The best well-known training approach for recurrent

neural networks (RNN) is the back propagation through

time . However, it is a first order gradient descent method,

and hence its learning speed could be very slow. An-

other well-known training algorithm is the Levenberg–

Marquardt one; its principal disadvantage is that is not

guarantee it will find the global minimum and its learning

speed could be slow too, this depends on the initializa-

tion. In past years, Extended Kalman Filter (EKF) based

algorithms has been introduced to train neural networks

(Alanis et al, 2007) . With the EKF based algorithm, the

learning convergence is improved. The EKF training of

neural networks, both feedforward and recurrent ones, has

proven to be reliable for many applications over the past

ten years . However, EKF training requires the heuristic

selection of some design parameters which is not always

an easy task (Alanis, 2007) .

During the past decade, the use of evolutionary com-

putation in engineering applications has increased. Evolu-

tionary algorithms apply adaptation and stochastically in

optimization problems in schemes as evolutionary pro-

gramming, genetic algorithms and evolution strategies

(Parsopoulos and Vrahatis, 2010). Particle Swarm Optimi-

zation (PSO) technique, which is based on the behavior of

a flock of birds or school of fish, is a type of evolutionary

computing technique . The PSO algorithm uses a popula-

tion of search points that evolve in a search space using a

communication method to transfer the acquired experience

from best solutions. This algorithm has several advantages

like the simplicity of the updating law, faster conver-

gence time and less complexity on the reorganization of

the population. The PSO methods also have emerged as

an excellent tool to improve the performance of Neural

Network learning process. In (Lin et al, 2009), the PSO

algorithm is extended to multiple swarms in a neuro-fuzzy

network with good results in forecasting applications. It

has been shown that the PSO training algorithm takes

fewer computations and is faster than the BP algorithm

for neural networks to achieve the same performance.

In this paper we propose the use of PSO for tuning

the parameters of EKF training algorithm for data model-

ing in smart grids. The length of the regression vector

is determined using the Cao methodology which is an

improvement to the false neighbors approach (Cao, 1997).

The applicability of this architecture is illustrated via

simulation using real data values for Photovoltaic modules

and arrays in order to show the potential applications in

forecasting for energy generation in smart grid schemes.

II. NEURAL IDENTIFICATION

In this paper for the neural model identification the

Recurrent Multi-Layer Perceptron is chosen, then the

neural model structure problem reduces to dealing with

the following issues: selecting the inputs to the network

and 2) selecting the internal architecture of the network.

The structure selected in this paper is NNARX

(Norgaard et al, 2000) (acronym for Neural Network

AutoRegressive eXternal input); the output vector for the

artificial neural network is defined as the regression vector

of an AutoRegressive eXternal input linear model structure

(ARX) (Alanis, 2007).

It is common to consider a general nonlinear system;

however, for many control applications is preferred to ex-

press the model in an affine form, which can be represented

by the following equations

| (n + 1) = i (| (n) > | (n � 1) > ===> | (n � t + 1)) (1)

where t is the dimension of the regression vector. In other

words, a nonlinear mapping i exists, for which the present

value of the output | (n + 1) is uniquely defined in terms

of its past values | (n) > ===> | (n � t + 1) and the present

values of the input x (n).
Considering that it is possible to define

! (n) = [| (n) > ===> | (n � t + 1)]W

which is similar to the regression vector of a ARX linear

model structure (Norgaard, 2000), then the nonlinear map-

ping i can be approximated by a neural network defined

as

| (n + 1) = * (! (n) > z�) + %

where z� is an ideal weight vector, and % is the mod-

eling error; such neural network can be implemented on

predictor form as

b| (n + 1) = * (! (n) > z) (2)

where z is the vector containing the adjustable parameters

in the neural network.

The neural network structure, used in this work is

depicted in Fig. 1, which contains sigmoid units only in

the hidden layer; the output layer is a linear one. The

used sigmoid function V (•) is defined as a logistic one,

as follows:

V ()) =
1

1 + exp (��))
> � A 0 (3)

where ) is any real value variable.

A. EKF Training Algorithm

Kalman filter (KF) estimates the state of a linear system

with additive state and output white noise. Kalman filter al-

gorithm is developed for a linear, discrete-time dynamical

system. For KF-based neural network training, the network

weights become the states to be estimated. Due to the fact

that the neural network mapping is nonlinear, an EKF-type

is required (Alanis et al, 2012).

Consider a nonlinear dynamic system described by the

next model in state space

z(n + 1) = i(n>z(n)) + y1(n)

|(n) = k(n>z(n)) + y2(n) (4)
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Figura 1. Neural network structure

where y1 (n) and y2 (n) are zero-mean, white noises

with covariance matrices given by T (n) and U (n), re-

spectively. i (n>z(n)) denotes the nonlinear transition

matrix function.

The basic idea of the extended Kalman filter is to

linearize the state space model 4 at each time instant

around the most recent state estimate, which is taken to

be ẑ(n). The training goal is to find the optimal weight

values which minimize the prediction error. The modified

Extended Kalman Filter (EKF) algorithm is defined by:

ẑ (n + 1) = ẑ (n) +N (n) [| (n)� b| (n)] (5)

N (n) = S (n)KW (n)P (n)

S (n + 1) = S (n)�N (n)K (n)S (n) +T (n)

with

P (n) =
£
U (n) +K (n)S (n)KW (n)

¤�1

h (n) = | (n)� b| (n) (6)

where h (n) 5 < is the respective approximation error,

S 5 <O×O is the prediction error associated covariance

matrix at step n, z 5 <O is the weight (state) vector, O is

the respective number of neural network weights, | is the

system output, b| is the neural network output, N 5 <O

is the Kalman gain vector, T 5 <O×O is the state noise

associated covariance matrix, U 5 < is the measurement

noise associated covariance; K 5 < is a vector, in which

each entry (Klm) is the derivative of one of the neural

network output, (b|) , with respect to one neural network

weight, (zm) defined as follows

Klm (n) =

�
Cb| (n)
Czm (n)

¸W

zl(n)=ẑl(n)

where l = 1> ===>p; m = 1> ===> O. Usually S , T and U

are initialized as diagonal matrices, with entries S (0),
T (0) and U (0), respectively. It is important to note that

for the EKF training algorithm S (0), T (0) and U (0)
are considered as design parameters that typically are

heuristically determined, however in this paper we propose

the use of Particle Swarm Optimization for determining

such parameters (Alanis, 2012).

B. PSO improvement for EKF Training Algorithm

Particle swarm optimization (PSO) is a swarm intelli-

gence technique developed by Kennedy and Eberhart in

1995 (Kennedy and Eberhart, 1995). In the basic PSO

technique proposed by Kennedy and Eberhart (Kennedy

J. and Eberhart, 1995), great number of particles moves

around in a multi-dimensional space and each particle

memorizes its position vector and velocity vector as well as

the time at which the particle has acquired the best fitness.

Furthermore, related particles can share data at the best-

fitness time. The velocity of each particle is updated with

the best positions acquired for all particles over iterations

and the best positions are acquired by the related particles

over generations.

To improve the performance of the basic PSO algorithm,

some new versions of it have been proposed. In this paper

the algorithm proposed in (Kiran et al, 2006) is used in

order to determine the design parameters for the EFK-

Learning algorithm. Initially a set of random solutions

or a set of particles are considered. A random velocity

is given to each particle and they are flown through the

problem space. Each particle has memory which is used to

keep track of the previous best position and corresponding

fitness. The best value of the position of each individual

is stored as slg. In other words, slg is the best position

acquired by an individual particle during the course of its

movement within the swarm. It has another value called

the sjg, which is the best value of all the particles slg in

the swarm. The basic concept of the PSO technique lies in

accelerating each particle towards its slg and sjg locations

at each time step. The PSO algorithm used in this paper

is defined as follows (Kiran, 2006):

1) Initialize a population of particles with random po-

sitions and velocities in the problem space.

2) For each particle, evaluate the desired optimization

fitness function.

3) Compare the particles fitness evaluation with the

particles slg if current value is better than the slg
then set slg value equal to the current location.

4) Compare the best fitness evaluation with the pop-

ulation’s overall previous best. If the current value

is better than the sjg, then set sjg to the particle’s

array and index value.

5) Update the particle’s velocity and position as fol-

lows:

The velocity of the lth particle of g dimension is

given by:

ylg (n + 1) = f0ylg (n)

+f1 rand1 (slg (n)� {lg (n))

+f2 rand2 (sjg (n)� {lg (n))

The position vector of the lth particle of g dimension

is updated as follows:

{lg (n + 1) = {lg (n) + ylg (n)

where f0 is the inertia weight, f1 is the cognition

acceleration constant and f2 is the social acceleration

constant.
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6) Repeat the step 2 until a criterion is met, usually a

sufficiently good fitness or a maximum number of

iterations or epochs.

In case the velocity of the particle exceeds Ypd{ (the

maximum velocity for the particles) then it is reduced to

Ypd{. Thus, the resolution and fitness of search depends

on the Ypd{. If Ypd{ is too high, then particles will move

in larger steps and so the solution reached may not be the

as good as expected. If Ypd{ is too low, then particles will

take a long time to reach the desired solution (Kiran, 2006).

Due the above explained PSO are very suitable models of

noisy problems, as the one we are considering.

C. Regressor Structure

We now discuss the choice of an appropriate number

of delayed signals to be used in the training phase, due

do a wrong number of delayed signals, used as regressors,

could have a substantially negative impact on the training

process, while a too small number implies that essential

dynamics will not be modeled. Additionally, large number

of regression terms increases the required computation

time. Also, if too many delayed signals are included in

the regression vector, it will contain redundant inform-

ation. For a good behavior of the model structure, it is

necessary to have both a sufficiently large lag space and

an adequate number of hidden units. If the lag space is

properly determined, the model structure selection problem

is substantially reduced. There have been many discus-

sions of how to determine the optimal embedding dimen-

sion from a scalar time series based in Takens’ theorem

(Cao, 1997). The basic methods, which are usually used

to choose the minimum embedding dimension, are: (1)

computing some invariant on the attractor, (2) singular

value decomposition and (3) the method of false neighbors.

However, a practical method to select the lag space is

the one proposed by Cao (Cao, 1997) to determine the

minimum embedding dimension; it overcomes most of

the shortcomings of the above mentioned methodologies,

like high dependence from design parameters and high

computational cost, among others (Cao, 1997). In this

paper, we adopt this technique for determination of the

optimal regressor structure.

We consider a time series {1> {2> ===> {q and define a set

of time-delay vectors as

|l =
£
{l {l+� === {l+(g�1)�

¤

l = 1> 2> ===>Q � (g� 1) �

where g is the embedding dimension. This dimension is

determined from the evolution of a function H (g) defined

as

H (g) =
1

Q � g�

Q�g�X

l=1

°°|l (g+ 1)� |q(l>g) (g+ 1)
°°

°°|l (g)� |q(l>g) (g)
°°

l = 1> 2> ===> Q � g�

where q (l> g) is an integer such that |q(l>g) (g) is

the nearest neighbor of |l (g) (Kennel et al, 1992)= The

minimum embedding dimension g0+1 is determined when

H (g) stops changing for any g0.

III. CHARACTERIZATION OF PHOTOVOLTAIC POWER

GENERATION

A photovoltaic module is composed from a number

of solar cells connected in series; the modules can be

connected in a series-parallel configuration to compose a

PV array. The characterization of a photovoltaic module is

given by its Voltage-Current curve under 1 sun of radiation

(1000 W/m2).
The photovoltaic module behavior will be predicted

using neural networks trained with the Extended Kalman

Filter. The module will be characterized by variable elec-

trical output of a photovoltaic system such as electrical

power, voltage and electric current depending on the input

variables irradiance, temperature module and wind speed.

We use a Recurrent Neural Network composed of 10

hidden neurons and 4 regressors and 1 external input.

Figura 2. Photovoltaics modules in the FI-UADY

Once we establish the main characteristics that influence
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the generation of electricity in photovoltaic installations
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we implement a Recurrent Neural Network to predict

the generated power. Meteorological and electrical data

that have been collected through measuring instruments

installed in the PV system during the period of five years

with readings every minute, this data will be subjected

to signal processing in Matlab software to have the time

series as a function of hours or minutes and get average

values for each ten minutes. The time series corresponding

to measurements taken every minute five days of physical

quantities irradiance, module temperature, wind speed,

voltage and DC current in a 1.6 kW installed photovoltaic

array in the Energy Laboratory at the School of Engin-

eering at the Autonomous University of Yucatan (Figure

2).

Due to random variations in weather conditions, power

generation from renewable sources is constantly changing.

Combining the forecast of solar irradiance, wind speed,

module temperature and output power is a good way to

improve the performance in scheduling of photovoltaic

power. Reliability is one of the most important factors in

smart grid operation, so constant monitoring and control

is necessary to achieve this goal. An accurate forecast

can improve the performance of intelligent controllers and

management systems in the grid.

This project is implemented in the Mechatronics Build-

ing of the UADY Faculty of Engineering using the data

obtained from an instrumented 1.6 kW array consisting

of 16 modules as shown in Fig. 2; each module has 3

temperature sensors.To characterize the wind and solar

potential, irradiance and wind speed data are collected

from the meteorological station installed next to the array.

The statistical values obtained from a one year analysis

are applied to train the neural predictor.

To evaluate the performance of the PSO algorithm, we

implement a neural network predictor for photovoltaic

power generation, on the basis of Kalman filter training.

As first stage we determine the optimal dimension of the

regression vector; then, we select the number of hidden

units for both hidden layers. The training is performed

using minute data from five days. The neural network

used is a RMLP trained with an PSO-EKF; the hidden

layer logistic sigmoid activation functions (3), whose �

was fixed in 1 and the output layer is composed of just one

neuron, with a linear activation function. The initial values

for the covariance matrices (U>T>S ) are determined using

the PSO algorithm, with 200 as the maximum number of

iterations, 4 generations, 3 particles and f1 = f2 = 0=1.
The initial values for neural weights are randomly selected.

The length of the regression vector is 6 because that is the

order of the system, which is determined using the cao

methodology.

The training is performed off-line, using a series-parallel

configuration; for this case the delayed output is taken from

the wind speed. The mean square error (MSE) reached in

training is 5× 10�4 in 200 iterations.

Figure 6 displays the computation of the minimum

embedding dimension for each of the analyzed variables.

We select 6 regressors to be included into the neural

network input vector for the Photovoltaic Power. To train

the HONN for each variable, we kept the following design

parameters: 3 external inputs corresponding to irradiance,

module temperature and wind speed, 15 units in the

hidden layer, 1 neuron in the output layer, 200 iterations

maximum, initial values for synaptic weights randomly

selected in the range and MSE required to end the training

less than 1x10�4. The training was performed off-line,

using a parallel configuration; for this case the delayed

output is taken from the neural network output.

We used 720 samples to accomplish the network train-

ing. The results for are shown from Fig. 7; the forecasting

is successfully done with a good prediction horizon.
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IV. CONCLUSIONS

This paper proposes the use of a RMLP trained with an

PSO-EKF learning algorithm, to predict photovoltaic array

output power with good results. The proposed method has

a compact structure but taking into account the dynamic

nature of the system which behavior is required to predict.

The proposed neural identifier proves in our experiments

to be a model that captures very well the complexity as-

sociated with important variables in smart grids operation.

Future work on implementing higher order neural networks

aims for the design of optimal operation algorithms for

smart grids composed of wind and photovoltaic generation

systems interconnected to the utility grid.
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