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Resumen— We extend previous results on chaotification to
the design of piecewise-linear systems with multiple isolated
attractors. Our proposed method allows one to assigned the
location and orientation of the attractors in state space.
We illustrate the effectiveness of the proposed chaotification
method with numerical simulations.
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I. INTRODUCTION

Chaotic behavior is now known to be useful and even

under certain conditions a desirable feature of dynamical

systems (Kapitaniak, 2000; Stark y Hardy, 2003). Due to

its dynamical richness, it maybe beneficial to intensionally

induce chaotic behaviors into a give system in order to,

using chaos control and synchronization techniques, achieve

a variety alternative goals (Chen y Dong, 1998). Over

the past few years, the scientific community has place

increasing attention on the design of chaotic systems and

circuits (Chen y Ueta, 2002; Fortuna et al., 2009), and their

potential applications to real-world problems, including

secure communications, persistent excitation of systems,

information processing and encryption, to mention but a few

(Strogatz, 2001; Ott, 2002; Tam et al., 2007). In particular,

significant research efforts have been devoted to the design,

using simple electronics, of systems with multiscroll chaotic

attractors. Different authors have shown that piecewise

linear (PWL) systems, i. e., nonlinear systems with a PWL

function in their mathematical description, can generate

multiscroll chaotic attractors. In 1991, Suykens and Van-

dewalle were the first to described a family of multiscroll

attractors, they realized their multiscroll attractor as a mul-

titude of double-scroll attractor of Chua’s circuit merge into

a single attractor (Suykens and Vandewalle, 1991; Suykens

and Vandewalle, 1993). Latter these results were extended

to described a family of attractors with an arbitrary, even or

odd, number of scrolls derived from a generalized version

of Chua’s circuit (Suykens and Vandewalle, 1997). Alterna-

tive methods have been proposed that generate multiscroll

attractors using many different special nonlinear functions,

including step functions, saturate functions, time-delayed

functions, and many others (Yalcin et al., 2000; Yalcin

et al., 2001; Yalcin et al., 2005). A switching manifold

approach to generated multiple merged basins of attraction

was proposed by Lü et al. in (Lü et al., 2003). The

generation of n-scroll hyperchaotic attractors has also been

considered, and even attractors with scrolls ordered on

directed grids of one, two, and three dimensions (Lü and

Chen, 2006).

Given the dynamical richness associated with chaotic

behavior, sometimes it is intensionally introduce into a

non-chaotic system, this technique is called chaotification

[(Chen and Dong, 1998; Wang and Chen, 2000)]. In par-

ticular, when chaos is introduced to the system using a

control law, the chaotification procedure is also known

as anticontrol of chaos [(Chen and Lai, 1998; Wang and

Chen, 1999)]. Recently, the use of switching controllers for

linear time invariant systems was investigated as a form to

generate chaotic multi-scroll attractors (Campos-Cantón et

al., 2010; Barajas-Ramı́rez, 2012). In this contribution, we

extend the use of chaotification of linear systems to the case

where multiple stable attractors coexist on the same state

space.

The remainder of the paper is organized as follows: In

Section II, we describe the anticontrol of chaos procedure

for a linear time invariant system. In Section III, we provide

a procedure to design multiple stable attractors within the

same state space and some general guideline rules to impose

its location and orientation. To illustrate the effectiveness

of our proposed design, in Section IV, we present some

numerical simulations. Finally, in Section V, we close this

contribution with conclusions.

II. PIECEWISE LINEAR CHAOTIC SYSTEMS

In the pursuit of finding systems that can be simple to build

and capable of chaotic behavior we propose to chaotify a

linear time invariant system:

ẋ(t) = Ax(t) + u(t) (1)

with u(t) = f(x(t)) an anticontrol feedback to be de-

signed. We restrict our attention to the specific case of
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a third dimensional dynamical system. Then, x(t) =
[x1(t), x2(t), x3(t)]

⊤ ∈ R
3 are the state variables of the

system; and A = {aij} ∈ R
3×3 is the real-valued system

matrix. In particular, we let the controller by given by

f(xσ(t)) : R → R a piecewise-linear function described

by:

u(t) = f(xσ(t)) =







Λ1x+B1, for h1(x(t))
Λ2x+B2, for h2(x(t))
Λ3x+B3, for h3(x(t))

(2)

where Λi ∈ R
3×3 and BiR

3; with hi(x(t)) switching con-

ditions in terms of the state variables of the system, which

describe the region of state space where that controller is

applied. In particular, we consider that these sections cover

the entire state space without overlaps. That is,

N
⋃

i=1

hi(x(t)) = R
3, and

N
⋂

i=1

hi = ∅ (3)

The closed-loop system (1)-(2) becomes:

ẋ(t) =







A1x+B1, for h1(x(t))
A2x+B2, for h2(x(t))
A3x+B3, for h3(x(t))

(4)

with Ai = A+ Λi.

Notwithstanding the simplicity of (4), for a wide range

of parameter values produces chaotic trajectories. Form the

point of view of chaotification (4) can be interpreted in

two different ways. From (2) we can see the chaotifica-

tion problem as the design of a switching controller for

the linear system (1), similar to the ones considered in

(Lü and Chen, 2006; Campos-Cantón et al., 2010; Barajas-

Ramı́rez, 2012). Alternatively, the closed-loop system can

be seen as a piecewise linear system with a structure that is

very similar to some benchmark chaotic systems like Sprott,

or Chua’s circuits (Chua et al., 1993; Sprott, 2000; Barajas-

Ramı́rez et al., 2003), then chaotification can be achieved

by making the selection of Ai and bi accordingly. For

illustration purposes, consider the chaotic Sprott’s circuit

given by

ẋ1 = x2

ẋ2 = x3

ẋ3 = −0.6x3 − x2 − 1.2x1 + 2sgn(x1) + u

(5)

which can be written in the form of (4) with A1 = A2 =

A3 =





0 1 0
0 0 1

−1.2 −1 −0.6



; B1 =





0
0
2



, B2 =





0
0
0



, and B3 =





0
0
−2



; for h1(x) = ’if x1 > 0’;

h2(x) = ’if x1 = 0’; and h3(x) = ’if x1 < 0’.

Analyzing this PWL system we can identify that two

conditions must be satisfied for chaotic behavior to emerge.

In the one hand, the local dynamics at each section hi(x(t))
must be unstable and oscillatory. On the other hand, the

overall trajectory must remain bounded. This gives the sys-

tem a local stretching and global folding mechanism. The

eigenvalues of the system matrix Ai for Sprott’s circuit are

{−0.9237, 0.1619±1.1282i}. Which implies that locally the

system has a stable direction, while the unstable direction

escapes oscillating around the equilibrium point of the local

subsystem. The transition generated by the partition of the

state space given by hi(x1) along with the location of

the fixed points force the trajectories to move from the

unstable direction of one subsystem to the stable direction

of the next. Then, as the trajectory moves away from the

current fixed point, it crosses to the neighboring section,

then initially is attracted to the new fixed point along the

stable mode, to latter be pushed away from it along the

unstable oscillatory mode. The attractor is generated as this

process is repeated as the dynamics evolve. In this way,

local stretching and global folding mechanisms result on

bounded chaotic behavior.

Motivated by the observations described above, we pro-

pose to design of multiscroll chaotic attractors by choosing

the components of (4) in the following manner:

A. Local Dynamics.

A.1 Eigenvalues of matrix Ai

For unstable local dynamics we propose to have:

• A purely real eigenvalue (λRP ), with negative real part

(ℜ(λRP ) < 0), and

• A pair of complex conjugate eigenvalues (λCC , λ∗

CC )

with positive real parts (ℜ(λCC) > 0).

In particular, we propose to use A =





0 1 0
0 0 1
−1 −1 −1





and Λ =





0 0 0
0 0 0
a1 a2 a3



 for (1) and (2), respectively.

Where the values of ai are to be designed such that

the eigenvalues of each subsystem satisfy the restrictions

expressed above.

B. Global Dynamics.

B.1 Location of equilibrium points

From (4), we have that the equilibrium points of each

subsystem are given by: Xi(t) = −A−1

i Bi with i = 1, 2, 3.

Then, for each section of state space the corresponding

equilibrium point can be placed at an arbitrary location if

the input matrix is chosen as:

Bi = −AiXi(t), for i = 1, 2, 3 (6)

B.2 Location of partitions of state space

The conditions hi(x(t)) divide the state space of (4)

into sections (Si), to have transitions between them, the

minimum number of sections is two. At each section

of (4) the trajectory has a combination of stable (λPR)

and unstable (λCC) modes. To have a bounded chaotic

behavior in which scrolls are describe around each Xi(t),
the distance between equilibrium points must be large

enough to have oscillation, and small enough to avoid
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unstable exponential growth. We want an equilibrium point

for each section and the transition (cij) between sections at

the middle point between their corresponding equilibrium

points. In particular, we propose the following:

• The distance between two fixed points (dij ) is chosen

such that when starting near one of them, without

switching, the trajectory describes a sufficiently large

number of oscillations before reaching the transition

between sections.

• The condition hi(x(t)) is bounded from one side by

cij , this value also bounds the section hj(x(t)) from the

opposite side. Moreover, cij is place about
dij

2
, between

the equilibrium points Xi and Xj .

In the following Section we use these guidelines to

generate multiple stable attractors in the state space of a

PWL system.

III. ATTRACTORS WITH DIFFERENT NUMBER OF

SCROLLS AND ORIENTATIONS

III-A. Two-scrolls symmetrically along the x1-axis

We start with a two-scroll attractor aline along the x1-

axis.

First, we chose the entries of Λ as a1 = a2 = a3 = 0,2,

then the system matrices of (4) are:

Ai =





0 1 0
0 0 1

−0.8 −0.8 −0.8



 (7)

Then, our local dynamics are given by the eigenvalues:

λPR = −0.8994, and λCC = 0,0497± 0,9418i.
Next, we chose the location of the nodes using rule B.1.

Since the local dynamics are relatively slow (see positive

real part of λCC ) we chose a distance of two along x1, with

X1 = [1, 0, 0]T and X2 = [−1, 0, 0]T . Then, from (6), the

input gains are:

B1 =





0
0
0.8



 and B2 =





0
0

−0.8



 (8)

Finally, the location of the transition between sections is

taken, as the simplest choice, the middle point between X1

and X2 along x1 with zero taken in the positive side, then

we have :

h1(x(t)) = {x(t) ∈ R
3|x1(t) ≥ 0} and

h2(x(t)) = {x(t) ∈ R
3|x1(t) < 0}

(9)

System (4) with (7)-(9) generates the two-scrolls attractor

symmetrically locate along x1 shown in Figura 1.

III-B. Three-scrolls symmetrically along the x2-axis

A three-scroll attractor can be generated. For example,

by considering the following equilibrium points X1 =
[5, 0, 0]T , X2 = [7, 0, 0]T , and X3 = [9, 0, 0]T . For simpli-

city, we use the same system matrices (7) as before. Then,
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Figura 1. Two-scroll attractor symmetrical along x1-axis
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Figura 2. Three-scroll attractor along x1-axis

we have the following input vectors:

B1 =





0
0
4



 , B2 =





0
0
5.6



 , and B3 =





0
0
7.2





(10)

with the transition values placed in the middle point bet-

ween the equilibrium points, such that:

h1(x(t)) = {x(t) ∈ R
3|x1(t) < 6}

h2(x(t)) = {x(t) ∈ R
3|x1(t) ≥ 6 ∧ x1(t) < 8}

h3(x(t)) = {x(t) ∈ R
3|x1(t) ≥ 8}

(11)

Figura 2 shows the attractor generate by (7) with (5) and

(10)-(11).

A change the orientation of the attractor can be achieved

with a coordinate transformation. In particular, the three-

scroll attractor generated with (10)-(11), can be oriented

along the x2-axis by the coordinate transformation

Ax2

i =





0 1 0
1 0 0
0 0 1



Ai





0 1 0
1 0 0
0 0 1





−1

=





0 0 1
1 0 0

−0.8 −0.8 −0.8





(12)

with the input matrices transformed by:

Bx2

i =





0 1 0
1 0 0
0 0 1



Bi (13)
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Figura 3. Three-scroll attractor along x2-axis

In this case, the input vectors remain unchange as Bx2

1
=

(0, 0, 4)T , Bx2

2
= (0, 0, 5.6)T , and Bx2

3
= (0, 0, 7.2)T .

Finally, the section of state space are redefine to:

h1(x(t)) = {x(t) ∈ R
3|x2(t) < 6}

h2(x(t)) = {x(t) ∈ R
3|x2(t) ≥ 6 ∧ x2(t) < 8}

h3(x(t)) = {x(t) ∈ R
3|x2(t) ≥ 8}

(14)

The three-scroll attractor along x2-axis given is shown in

Figura 3.

IV. MULTIPLE ATTRACTORS FOR THE SAME SYSTEM

The designs above can be combine into a single PWL

system. The basic idea is to divide the state space in

larger partitions, in turn, these partitions are re-partition

to allocate desired scrolls with the desired orientation. For

example, consider the case of two two-scroll attractors in

the same system. Taking the system (4) with (7)-(9) as our

base attractor. The state space is divided into two parts,

namely H1(x(t)) = {x(t) ∈ R3
: x1(t) < 2.5} and

H2(x(t)) = {x(t) ∈ R3
: x1(t) ≥ 2.5}. In each section we

can allocate a two-scroll attractor, by setting the equilibrium

points at X1 = [1, 0, 0]T and X2 = [−1, 0, 0]T for H1(x(t));
and X3 = [4, 0, 0]T and X4 = [6, 0, 0]T for H2(x(t)). Then,

the input vectors become

B1 =





0
0
0.8



 , B2 =





0
0

−0.8





B3 =





0
0
3.2



 , B4 =





0
0
4.8



 (15)

With the transition between sections given by:

h1(x(t)) = {x(t) ∈ R
3|x1(t) ≥ 0 ∧ x1(t) < 2.5}

h2(x(t)) = {x(t) ∈ R
3|x1(t) < 0}

h3(x(t)) = {x(t) ∈ R
3|x1(t) ≥ 2.5 ∧ x1(t) < 5}

h4(x(t)) = {x(t) ∈ R
3|x1(t) ≥ 5}

(16)

The system (7) with (15) and (16) has two stable two

scroll attractors in that co-exist in the same state space.

This attractors have their own basin of attraction and once

a trajectory is within the attractor it remains there evermore.

In particular, for our illustrative system for initial conditions
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Figura 4. Two stable two-scroll attractors for the same system

that are located around X1 and X2 the trajectories remain

in the left attractor of Figura 4, while for initial conditions

around X3 and X4 the trajectories are in the right-side

attractor.

V. CONCLUSIONS

A chaotification methodology previously reported is ex-

tended in this contribution to the case of multistable attrac-

tors. The proposed methodology has two main advantages:

In the first place, its very simple to design the desire

number of stable attractors for the same system. Secondly,

the location and orientation of the attractors within the

state space of the system imposed directly. In this sense,

we provide simple guideline rules, to establish the local

dynamics and the choices of locations and transitions in the

global dynamics to achieve the desire multiple attractor. The

applicability of multistable attractors is of significance, as it

provides potential benefits in chaos applications like secure

communications, and the design of reconfigurable logical

gates, and for chaos computing. Current research efforts

are devoted to exploit the simplicity of the multistable

chaotification method proposed for such applications, our

results will be reported elsewhere.
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Lü, J., Chen, G. “Generating multi-scroll chaotic attractors: theories,
methods and applications”, Int. J. Bifurcation Chaos Appl. Sci. Eng.,
16(4), 775–858, 2006.
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