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Abstract— This paper reports a solution to the leader-
follower consensus problem, provided that at least one follower
has a direct access to the leader’s position, and to the leaderless
consensus problem in networks composed of nonidentical
flexible-joint robot manipulators. The network is modeled as
an undirected graph and it is assumed that the interconnection
does not induce time-delays. The proposed controller has
two different terms, one that dynamically compensates the
link gravity and another which ensures the desired consensus
objective. This last term is a simple Proportional plus damping
scheme. Simulations are provided to support the theoretical
results.
Keywords—Network of Robots, Flexible Arms, Decentralized
Control.

I. INTRODUCTION

For networks of multiple agents, the consensus control

objective is to reach an agreement between certain coor-

dinates of interest using a distributed controller. There are

mainly two consensus problems: the leader-follower, where

a network of follower agents has to be synchronized with a

given leader, and the leaderless, where all agents agree at a

certain coordinates value. The solutions to these problems

have recently attracted the attention of the research commu-

nity in different fields, such as biology, physics, control the-

ory and robotics (refer to (Olfati-Saber et al. 2007, Scardovi

and Sepulchre 2009, Ren 2008), for solutions with linear

agents, and to (Yu et al. 2011, Scardovi et al. 2009, Stan

and Sepulchre 2007, Zhao et al. 2009, Nuño et al. 2011b),

for solutions with classes of nonlinear agents).

The practical applications of the solutions to the consen-

sus problems are diverse and range from formation control

of multiple unmaned aerial vehicles to the synchroniza-

tion of swarms of mobile robots. A particular example is

a robot teleoperator, where two mechanical manipulators

are coupled by a communication channel (Anderson and

Spong 1989). In this last example, the control objective

in these systems is that when the human operator moves

the local manipulator, the remote manipulator tracks its

position, and the force interaction of this last with the

environment is reflected back to the operator (Nuño et

al. 2011a). The results reported in the present paper are

an extension to the case of networks of under–actuated

Euler-Lagrange (EL) systems of the controller reported

in (Nuño et al. 2009). A direct application of the con-

sensus controllers presented here is the teleoperation of

multiple-remote devices, the collaboration of multiple users

via a multiple-local multiple-remote system, among others

(Malysz and Sirouspour 2011, Rodriguez-Seda et al. 2010).

Consensus of networks of EL-systems without time-

delays has been considered in (Ren 2009, Mei et al. 2011)

using simple proportional controllers together with filtered

velocities. The work of (Nuño et al. 2011b) proposes an

adaptive controller for EL-systems that solves the consensus

problem with constant time-delays. Further results are those

by (Liu and Chopra 2012) and by (Hatanaka et al. 2012),

which consider the consensus problem in Cartesian space

with constant delays. Recently, in (Nuño et al. 2012) it has

been proved that networks composed by nonidentical EL-

systems with variable time–delays can reach a consensus,

using P+d controllers, provided enough damping is injected.

Nevertheless, it should be underscored that, all these pre-

vious results deal with fully–actuated EL-systems (fully–

actuated robots). However, in diverse applications, including

space and surgical robots, the use of thin, lightweight

and cable-driven manipulators is increasing. These systems

exhibit joint or link flexibility and hence they are under–

actuated mechanical systems. Furthermore, it must be noted

that, as it has been shown in (Tavakoli and Howe 2009), the

lumped (linear) dynamics of a flexible link is identical to

the (linear) dynamics of a flexible joint.

In this sense, and up to the authors knowledge, the

literature on the control of networks of under–actuated EL-

systems is almost non-existent (in this case, the number

of inputs is strictly less than the degrees-of-freedom and

designing a controller is far more complicated), few re-

markable exceptions being (Nair and Leonard 2008, Avila-

Becerril and Espinosa-Pérez 2012) and, more recently,

(Avila-Becerril et al. 2013). In (Nair and Leonard 2008) the

Controlled–Lagrangian technique is employed to solve the

leaderless consensus in networks without delays. Via a full-

state feedback controller and under the assumption that the
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initial conditions are known, (Avila-Becerril and Espinosa-

Pérez 2012) proposes the first solutions to the leader-

follower, provided that all followers have direct access to the

leader, and the leaderless problems for directed graphs with

constant time–delays. (Avila-Becerril et al. 2013) reports

the solution to the leaderless consensus eliminating the

assumption of the knowledge of the initial conditions of

(Avila-Becerril and Espinosa-Pérez 2012).

Under the assumption that the interconnection graph is

undirected and inspired by the exact gravity cancelation

scheme of (De Luca and Flacco 2010, De Luca and

Flacco 2011), this work proposes a simple P+d controller

which provides a Globally Asymptotically Stable (GAS)

solution to the leader-follower problem, provided that at

least one follower has a direct access to the leader position,

and to the leaderless consensus problem. Despite that this

work focusses on finding the consensus solutions for the

case without interconnection time–delays, by using the

results of (Nuño et al. 2012), the case with variable time–

delays can be easily handled.

Notation. R := (−∞,∞), R>0 := (0,∞), R≥0 :=
[0,∞). The spectrum of the square matrix A is denoted by

σ(A) while the minimum and the maximum of its spectrum

are denoted by σmin(A) and σmax(A), respectively. ||A||
denotes the matrix-induced 2-norm. |x| stands for the stan-

dard Euclidean norm of vector x. Ik is the identity matrix

of size k×k. 1k and 0k represent column vectors of size k
with all entries equal to one and to zero, respectively. For

any function f : R≥0 → R
n, the L∞-norm is defined as

‖f‖∞ := sup
t≥0

|f(t)|, L2-norm as ‖f‖2 := (
∫∞

0
|f(t)|2dt)1/2.

The L∞ and L2 spaces are defined as the sets {f : R≥0 →
R

n : ‖f‖∞ < ∞} and {f : R≥0 → R
n : ‖f‖2 < ∞},

respectively. The subscript i ∈ N̄ := {1, ..., N}, where N
is the number of nodes of the network.

II. FLEXIBLE–JOINT ROBOT MANIPULATORS

Let us consider a network of N non-identical, flexible–

joint robot manipulators with n-DOF. Directly actuated,

revolute joints robots are assumed and the simplified model

for flexibility of (Spong et al. 2005) is adopted. For every

i, the dynamics of the i-th manipulator is given by

Mi(qi)q̈i +Ci(qi, q̇i)q̇i + gi(qi) + Si(qi − θi) = 0n

Jiθ̈i + Si(θi − qi) = τ i

(1)

where qi ∈ R
n is the link angular position and θi ∈ R

n

is the joint (motor) angular position. The matrix Mi(qi) ∈
R

n×n is the inertia matrix, the matrix Ci(qi, q̇i) ∈ R
n×n

describes the Coriolis and centrifugal effects (defined via the

Christoffel symbols of the first kind), the vector gi(qi) :=
∇Ui(qi) is the gravity force with Ui : R

n → R being the

corresponding potential energy, the matrix Ji ∈ R
n×n is the

motor inertia at the joints, which is symmetric and positive

definite, the matrix Si ∈ R
n×n is the joint stiffness which is

also symmetric and positive definite and the vector τ i ∈ R
n

is the control input.

Dynamics (1) exhibit the following well–known proper-

ties (Spong et al. 2005, Kelly et al. 2005) and thus they are

assumed throughout this paper.

(P1) Mi(qi) is symmetric and there exists λmi, λMi > 0
such that 0 < λmiIn ≤ Mi(qi) ≤ λMiIn.

(P2) The matrix Ṁi(qi)−2Ci(qi, q̇i) is skew-symmetric.

(P3) There exists kgi > 0 such that

∣

∣

∣

∂gi(qi)
∂qi

∣

∣

∣
≤ kgi. Hence,

for all qi1,qi2 ∈ R
n the following inequality holds

|gi(qi1)− gi(qi2)| ≤ kgi|qi1 − qi2|.

III. NETWORK INTERCONNECTION

The interconnection of the N agents is modeled using

the Laplacian matrix L := [ℓij ] ∈ R
N×N , whose elements

are defined as

ℓij =

{ ∑

k∈Ni

aik i = j

−aik i 6= j
(2)

where aij > 0 if j ∈ Ni and aij = 0 otherwise. Ni is the

set of agents transmitting information to the ith robot.

In order to ensure that the interconnection forces are gen-

erated by the gradient of a potential function, the following

assumption is used in this paper:

(A1) The robot interconnection graph is undirected and

connected.

Note that, by construction, L has a zero row sum, i.e.,

L1N = 0N . Moreover, Assumption (A1), ensures that L is

symmetric, has a single zero-eigenvalue and that the rest of

the spectrum of L has positive real parts. Thus, rank(L) =
N − 1. Using these facts, it is straightforward to show that,

for any z ∈ R
N , z⊤Lz = 1

2

∑

i∈N̄

∑

j∈Ni

aij(zi − zj)
2 ≥ 0.

Furthermore,

d

dt
z⊤Lz = 2ż⊤Lz = 2

∑

i∈N̄

żi
∑

j∈Ni

aij(zi − zj). (3)

IV. LEADER-FOLLOWER CONSENSUS

In this section it is considered the case when the network

of N flexible–joint robot manipulators (followers) has to be

regulated at a leader’s constant position, denoted q0 ∈ R
n.

The leader is regarded as node 0 of the N+1 agent network.

The control objective is to ensure that all link positions

of the flexible-joint manipulators asymptotically converge

to the constant leader position, i.e., for all i ∈ N̄ ,

lim
t→∞

|q̇i(t)| = 0, lim
t→∞

qi(t) = q0,

provided that the leader position (node) is only available

to a certain set of robot manipulators. With regards to

the leader-followers interconnection, this paper has the

following assumption:

(A2) At least one of the robot manipulators has access

to the leader’s position q0, i.e., in the augmented

interconnection graph of N + 1 nodes, there exists

at least one directed edge from the leader (node 0) to

any of the N followers.
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Assumptions (A1) and (A2) ensure that the leader posi-

tion is globally reachable from any other node, i.e., from the

leader’s node there exist a path to any ith robot-manipulator

for i ∈ N̄ . Moreover, it also holds that

Fact 1: Suppose that Assumptions (A1) and (A2)

hold. Define matrix L0 := L + A0, where A0 :=
diag(a10, . . . , aN0) ∈ R

N×N and ai0 > 0 if the leader’s

position q0 is directly available to the ith flexible-joint

manipulator and ai0 = 0, otherwise. Under these conditions

L0 is symmetric, positive definite and of full rank.

Proof. Assumption (A1) ensures that σmin(L) = 0 is a

single eigenvalue and the rest of the spectrum is strictly pos-

itive. Moreover, L is symmetric and since A0 is diagonal,

then L0 is symmetric. Hence, σ(L0) has only real numbers.

Inspired by (Hu and Hong 2007), let us now invoke the

Gershgorin Disk Theorem to locate the spectrum of L0.

There exist N disks, denoted Di, centered in the complex

plane at ℓii + ai0 with radius
∑

j∈Ni

|aij |, such that

Di :=







λ : |λ− ℓii − ai0| ≤
∑

j∈Ni

|aij |







,

since ℓii =
∑

j∈Ni

aij and aij ≥ 0, then λ ≥ 0 and

Di may tangentially intersect the origin. Moreover, from

Assumption (A2), there exists at least one ai0 > 0 and

hence there is at least one disk that does not intersect the

origin. Further, since the undirected graph is connected then

L is irreducible and, by Taussky’s Theorem, if 0 is an

eigenvalue of L0 then it has to lie in the boundary of all the

disks (Serre 2010), we conclude that 0 /∈ σ(L0), thus σ(L0)
is strictly positive and real. Which, together with symmetry,

ensures that L0 is positive definite. The full rank property

follows directly. �

Now, inspired by the exact gravity cancelation scheme of

(De Luca and Flacco 2010, De Luca and Flacco 2011), let

us define the new variable xi ∈ R
n as

xi := θi − S−1
i gi(qi). (4)

Using (4) and defining the controller

τ i = τ̄ i + gi(qi) + JiS
−1
i g̈i(qi)−Diẋi, (5)

where Di ∈ R
n×n is the damping gain and is symmetric

and positive definite and τ̄ i ∈ R
n is the interconnection

controller term that will be defined later, each flexible–joint

robot manipulator (1) can be written as

Mi(qi)q̈i +Ci(qi, q̇i)q̇i + Si(qi − xi) = 0n

Jiẍi +Diẋi + Si(xi − qi) = τ̄ i.

In order to achieve the desired control objective, let us

define τ̄ i as

τ̄ i = −kiai0(xi − q0)− ki
∑

j∈Ni

aij(xi − xj) (6)

where ki > 0 and ai0 as defined in Fact 1.

The closed-loop system (1), (5) and (6) is

q̈i = −M−1
i (qi) [Ci(qi, q̇i)q̇i + Si(qi − xi)]

ẍi = −J−1
i [Diẋi + Si(xi − qi) + kiai0(xi − q0)]

−kiJ
−1
i

∑

j∈Ni

aij(xi − xj).











(7)

We are now ready to state one of the main results of this

work,

Proposition 1: Consider a network of N flexible–joint

manipulators, whose dynamics fulfill (1) and in closed-loop

with the controller (5) and (6). Suppose that Assumptions

(A1) and (A2) hold. Under these conditions, the velocities

and the link position error, between each robot manipulator

and the leader, asymptotically converge to zero, i.e.,

lim
t→∞

|q̇i(t)| = lim
t→∞

|qi(t)− q0| = 0, ∀i ∈ N̄ .

Proof. Every system in (7) exhibits the following energy

function

Ei := Ki(q̇i, ẋi) + Ui(qi,xi) + Ui0(xi,q0)

where Ki is the kinetic energy, given by

Ki(q̇i, ẋi) =
1

2

[

q̇⊤
i Mi(qi)q̇i + ẋ⊤

i Jiẋi

]

, (8)

Ui is the potential energy stored in the xi-coordinate and

the link virtual spring, such that

Ui(qi,xi) = (xi − qi)
⊤Si(xi − qi), (9)

Ui0 is the potential energy stored in the leader-follower

interconnection and it fulfills

Ui0(xi,q0) = kiai0|xi − q0|
2. (10)

Evaluating Ėi along (7), using Property (P2) and since

q̇0 = 0n, gives Ėi = −ẋ⊤
i Diẋi − ki

∑

j∈Ni

aij ẋ
⊤
i (xi − xj).

Let us now define E as the total energy of all the N
system (7) plus the potential energy in the interconnection:

E :=
∑

i∈N̄





1

ki
Ei +

1

4

∑

j∈Ni

aij |xi − xj |
2



 . (11)

Hence,

Ė = −
∑

i∈N̄





1

ki
ẋ⊤
i Diẋi +

1

2

∑

j∈Ni

aij(ẋi + ẋj)
⊤(xi − xj)





Using the fact that

(ẋi+ẋj)
⊤(xi−xj) = ρi−ρj+ẋ⊤

i (xi−xj)−x⊤
i (ẋi−ẋj),

where ρi := ẋ⊤
i xi, ρj := ẋ⊤

j xj and, by the Laplacian

properties,

∑

i∈N̄

∑

j∈Ni

aij(ẋi + ẋj)
⊤(xi − xj) = ẋ⊤(L⊗ In)x−

−x⊤(L⊗ In)ẋ− 1⊤
NLρ = 0,
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where x := col(x⊤
1 , . . . ,x

⊤
N ), ẋ := col(ẋ⊤

1 , . . . , ẋ
⊤
N ), ρ :=

col(ρ1, . . . , ρN ) and ⊗ is the standard Kronecker product.

Thus, Ė = −
∑

i∈N̄

1
ki

ẋ⊤
i Diẋi ≤ 0.

It should be noted that, for all i ∈ N̄ , E is positive

definite and radially unbounded with regards to the signals:

q̇i, ẋi, |xi − qi| and |xi − q0|. This last, and the fact that

Ė ≤ 0 ensure that such signals are bounded. Moreover,

ẋi ∈ L2. From the closed-loop dynamics (7) it also holds

that q̈i, ẍi ∈ L∞. Now, ẋi ∈ L∞ ∩L2 and ẍi ∈ L∞ imply

that lim
t→∞

|ẋi(t)| = 0.

The time-derivative of ẍi satisfies

d

dt
ẍi =− J−1

i [Diẍi + Si(ẋi − q̇i) + kiai0ẋi]−

− ki
∑

j∈Ni

aijJ
−1
i (ẋi − ẋj),

(12)

and, since ẍi, ẋi, q̇i ∈ L∞, d
dt ẍi ∈ L∞. This last and the

fact that lim
t→∞

∫ t

0
ẍi(σ)dσ = lim

t→∞
(ẋi(t)− ẋi(0)) = −ẋi(0),

supports the claim that lim
t→∞

|ẍi(t)| = 0, according to

Barbalat’s Lemma.

Since all signals, except q̇i, in the right-hand-side of

(12) asymptotically converge to zero, if we can prove that

lim
t→∞

| ddt ẍi(t)| = 0, then lim
t→∞

|q̇i(t)| = 0. For, because

convergence to zero of ẍi implies that lim
t→∞

∫ t

0
d
dσ ẍi(σ)dσ =

lim
t→∞

(ẍi(t) − ẍi(0)) = −ẍi(0), it only rests to show

that d2

dt2 ẍi ∈ L∞. Indeed, (12) and d
dt ẍi, ẍi, q̈i ∈ L∞

ensures that d2

dt2 ẍi ∈ L∞, as needed. Finally, lim
t→∞

|q̇i(t)| =

0 and boundedness of q̈i, q̇i, ẋi ensures, from (7), that

lim
t→∞

|q̈i(t)| = 0.

The previous convergence claims ensure that the equi-

librium point is Globally Asymptotically Stable (GAS).

Furthermore, one part of this GAS equilibrium point fulfills

(ẍi, ẋi, q̈i, q̇i) = (0n,0n,0n,0n) and the rest satisfies

qi = xi

ai0(xi − q0) +
∑

j∈Ni

aij(xi − xj) = 0n,

which, by piling up the N vectors qi and xi as q :=
col(q⊤

1 , . . . ,q
⊤
N ) and x := col(x⊤

1 , . . . ,x
⊤
N ), respectively,

it can be written as q = x and

(A0 ⊗ In)(x− (1N ⊗ q0)) + (L⊗ In)x = 0Nn.

Moreover, from the fact that L1N = 0N it also holds that

q = x

(L0 ⊗ In)(x− (1N ⊗ q0)) = 0Nn.

This, together with Fact 1, ensures that the only possible

solution to these equations is q = x = (1N ⊗ q0). Thus,

for all i ∈ N̄ , qi = q0. This concludes the proof. �

V. LEADERLESS CONSENSUS

The control objective in the leaderless consensus problem

is to show that, in the absence of a leader, all the N
robot manipulators link position asymptotically converge

to a common consensus point, denoted qc ∈ R
n, and that

velocities asymptotically converge to zero, i.e., for all i ∈ N̄
there exist qc ∈ R

n such that

lim
t→∞

qi(t) = qc, lim
t→∞

|q̇i(t)| = 0. (13)

The controller is the same as in (5) and (6) with ai0 = 0
for all i ∈ N̄ . In this case, the closed-loop system becomes

q̈i = Mi(qi)
−1 [Si(xi − qi)−Ci(qi, q̇i)q̇i] (14)

ẍi = J−1
i [Si(qi − xi)−Diẋi − ki

∑

j∈Ni

aij(xi − xj)]

Proposition 2: Consider a network of N flexible–joint

manipulators, whose dynamics fulfill (1) and in closed-

loop with the controller (5) and (6) with ai0 = 0 for all

i ∈ N̄ . Suppose that Assumption (A1) hold. Under these

conditions, all link positions asymptotically converge to

a common consensus point and velocities asymptotically

converge to zero, i.e., (13) holds for all i ∈ N̄ .

Proof. The proof follows verbatim the proof of Proposition

1, hence only the main steps are given. In this case,

Ei := Ki(q̇i, ẋi) + Ui(qi,xi)

where Ki and Ui have been defined in (8) and (9), respec-

tively. Moreover, using E as in (11) yields

Ė = −
∑

i∈N̄

1

ki
ẋ⊤
i Diẋi ≤ 0.

Using, systematically, Barbalat’s Lemma with

Ji
d

dt
ẍi = −Diẍi − Si(ẋi − q̇i)− ki

∑

j∈Ni

aij(ẋi − ẋj),

it can be shown that the part of the equilibrium point given

by (ẍi, ẋi, q̈i, q̇i) = (0n,0n,0n,0n) is GAS. The rest of

the equilibrium satisfies qi = xi and
∑

j∈Ni

aij(xi − xj) =

0n, which implies that q = x and (L ⊗ In)x = 0Nn.

This last, together with the Laplacian properties, ensures

that the only possible solution to these equations is q =
x = (1N ⊗ qc), for any qc ∈ R

n. Hence, for all i ∈ N̄ ,

qi = qc. This concludes the proof. �

Remark 1: If link accelerations are not available for

measurement then, to implement the proposed controllers,

the term g̈i(qi) can be algebraically computed as

g̈i(qi) = −
∂gi(qi)

∂qi
q̈i +

n
∑

k=1

∂2gi(qi)

∂qi∂qik
q̇iq̇ik

= −
∂gi(qi)

∂qi
M−1

i [Ciq̇i + Si(qi − xi)]

+
n
∑

k=1

∂2gi(qi)

∂qi∂qik
q̇iq̇ik .

CNCA 2013, Ensenada B.C. Octubre 16-18 357



This algebraic manipulation does not induce an algebraic

loop because the relative degree is four.

VI. SIMULATIONS
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Fig. 1. Weighted network composed of ten 2-DOF nonlinear flexible-
joint manipulators with revolute joints and a leader at node 0. There are
three different groups of manipulators and the members of each group are
equal.

By means of some numerical simulations, this section

shows the consensus performance of the proposed con-

trollers. For, we consider a weighted network composed

of ten 2-DOF nonlinear flexible-joint manipulators with

revolute joints. The network has three different groups of

manipulators and the members of each group are equal. The

inertia matrix, the Coriolis and centrifugal effects matrix

and the gravity vector are, respectively,

Mi(qi) =

[

αi + 2βici2 δi + βici2
δi + βici2 δi

]

,

Ci(qi, q̇i) =

[

−2βisi2 q̇i2 −βisi2 q̇i2

βisi1 q̇i2 0

]

and

gi(qi) = col(li1(mi1 +mi2)ci1 +gli2mi2ci12 , gli2mi2ci12),

where cik , sik are the short notation for cos(qik) and

sin(qik); ci12 stands for cos(qi1 + qi2); qik represents the

angular position of link k of manipulator i, with k ∈ 1, 2;

αi = l2i2mi2 + l2i1(mi1 + mi2), βi = li1 li2mi2 and δi =
l2i2mi2 , where lik and mik are the respective lengths and

masses of each link and g = 9.81 is the acceleration of

gravity constant.

The physical constant parameters are: m1 = 2.5kg, m2 =
1.5kg and l1 = l2 = 0.4m for agents 1, 2 and 3; m1 = 2kg,

m2 = 1kg and l1 = l2 = 0.4m for agents 4, 5 and 6;

m1 = 3 kg, m2 = 2 kg and l1 = l2 = 0.4m for agents 7,

8, 9 and 10. The motor inertia and the joint stiffness have

been set to Ji = diag(0.7, 0.7) and Si = diag(100, 100),
respectively, for all the agents.

The following simulations are performed using three

different sets of initial conditions and, in all cases, with

initial zero velocities and θ(0) = q(0). For the first set

q⊤(0) = [1, 2, 2.5, 1.5, 3, 0.5,−1,−1.5, 0.5, 3, 3,−2

− 2.5, ,−0.5, 0.5, 1,−2, 3.5, 3.5, 2.5]; (15)

for the second set, q(0) in (15) has been multiplied by

2 and, for the third set, q(0) in (15) has been multiplied

by −2. The interconnection gains have been set as ki =
15 and the damping gains as Di = diag(8, 8), for all

i ∈ [1, 10].

A. Leader-Follower Consensus

The interconnection graph of the followers and the leader

is shown in Fig. 1. The leader constant position is q0 =
[3, 0]⊤. Only followers number 10 and 6 receive the de-

sired leader position and the leader-follower interconnection

gains have been set to a100 = a60 = 2.

The dynamic behavior of the followers link and joint

positions is depicted in Fig. 2. Such behavior with the

three different sets of initial conditions is shown in columns

A, B and C, respectively, and in all cases the followers

asymptotically reach the desired leader joint position.

B. Leaderless Consensus

For these simulations, the interconnection graph is the

same of Fig. 1 but with a100 = a60 = 0. The leaderless

consensus results are depicted in Fig. 3, from which it

can be observed that the agents asymptotically reach a

consensus point and such consensus point changes if the

initial conditions change.

VII. CONCLUSIONS

Under the assumption that the interconnection graph is

undirected and does not induce time-delays, a globally

asymptotically stable solution to the leader-follower and the

leaderless consensus problem, for networks composed of

nonidentical flexible-joint robot manipulators, is reported

in this paper. The proposed controller is composed of two

different terms, one that dynamically compensates the link

gravity and another which ensures the desired consensus

objectives. The last term is a simple Proportional plus

damping scheme.

Using a ten flexible-joint robot network, numerical sim-

ulations show the performance of the proposed controller

for both consensus problems.

A clear extension of this work is the inclusion of variable

time-delays in the interconnection. A possible solution to

this issue is to incorporate the recent results in (Nuño et

al. 2012). This extension is underway and will be reported

elsewhere.
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Avila-Becerril, S., G. Espinosa-Pérez, E. Panteley and R. Ortega (2013).

Consensus control of flexible joint robots. Automatica (submitted).
De Luca, A. and F. Flacco (2010). Dynamic gravity cancellation in robots

with flexible transmissions. In: 49th IEEE Conference on Decision

and Control. pp. 288–295.
De Luca, A. and F. Flacco (2011). A pd-type regulator with exact gravity

cancellation for robots with flexible joints. In: IEEE International

Conference on Robotics and Automation. pp. 317–323.
Hatanaka, T., Y. Igarashi, M. Fujita and M.W. Spong (2012). Passivity-

based pose synchronization in three dimensions. IEEE Transactions

on Automatic Control 57(2), 360–375.
Hu, J. and Y. Hong (2007). Leader-following coordination of multi-agent

systems with coupling time delays. Physica A: Statistical Mechanics

and its Applications 374(2), 853–863.
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networks of nonidentical Euler-Lagrange systems with variable time-
delays. In: IEEE Conf. on Decision and Control. Maui, Hawaii, USA.
pp. 4721–4726.

Olfati-Saber, R., J.A. Fax and R.M. Murray (2007). Consensus and
cooperation in networked multi-agent systems. Proc. of the IEEE

95(1), 215–233.
Ren, W. (2008). On consensus algorithms for double-integrator dynamics.

IEEE Trans. Auto. Control 53(6), 1503–1509.
Ren, W. (2009). Distributed leaderless consensus algorithms for networked

euler-lagrange systems. Int. Jour. of Control 82(11), 2137–2149.
Rodriguez-Seda, E.J., J.J. Troy, C.A. Erignac, P. Murray, D.M. Stipanovic

and M.W. Spong (2010). Bilateral teleoperation of multiple mobile
agents: Coordinated motion and collision avoidance. IEEE Trans.

Contr. Sys. Tech. 18(4), 984–992.
Scardovi, L. and R. Sepulchre (2009). Synchronization in networks of

identical linear systems. Automatica 45(11), 2557–2562.
Scardovi, L., M. Arcak and R. Sepulchre (2009). Synchronization of

interconnected systems with an input-output approach. part i: Main
results. In: Proc. IEEE Conf. on Dec. and Control.

Serre, D. (2010). Matrices: Theory and Applications. Springer.
Spong, M.W., S. Hutchinson and M. Vidyasagar (2005). Robot Modeling

and Control. Wiley.
Stan, G.-B. and R. Sepulchre (2007). Analysis of interconnected oscillators

by dissipativity theory. IEEE Transactions on Automatic Control

52(2), 256–270.
Tavakoli, M. and R. D. Howe (2009). Haptic effects of surgical teleoperator

flexibility. Int. Jour. Robot. Res. 28(10), 1289–1302.
Yu, W., G. Chen and M. Cao (2011). Consensus in directed networks of

agents with nonlinear dynamics. IEEE T. Auto. Contr. 56(6), 1436–
1441.

Zhao, J., D. Hill and T. Liu (2009). Synchronization of complex dynamical
networks with switching topology: A switched system point of view.
Automatica 45(11), 2502–2511.

CNCA 2013, Ensenada B.C. Octubre 16-18 359


