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Abstrac— This paper deals with the kinematic control
design of a dynamic compensator to solve the maneuvering
problem for a wheeled mobile robot (WMR) of the type
(2,0). The maneuvering problem involves two tasks; the
first one called the geometric task which forces the system
output to converge to a desired θ−parametrized path; the
second one, called the dynamic task, intended to design an
algorithm to assign a desired speed profile along the path.
Nonlinear control techniques for control design are based
on backstepping and Lyapunov functions. The controller
performance is evaluated by real time experiments.
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I. INTRODUCTION

In many real problems autonomous mobile robots have

diverse applications, e.g., military, surveillance, material

transportation, etc. In these kind of applications, it is of

primary importance to steer the mobile robot (wheeled

mobile robots (WMRs), ships, UAV’s, etc.) along a desired

path. A velocity profile along the path may be of secondary

interest. Motion control methodologies which solve these

problems are trajectory tracking and path following.

In Micaelli et al., 1993, is proposed a path-following con-

troller based on Frenet-Serret frames, which only requires to

stabilize a single variable; in Jiang et al., 1997, is proposed a

trajectory tracking controller for the WMR type (2,0) using

the integrator backstepping. Trajectory tracking has some

intrinsic problems for physical implementation, the main

one, the time variable is the protagonist and not the position,

so the tracking controller must force the system to converge

to the trajectory and satisfy a velocity profile given by the

time derivative of the trajectory, even if system position

is not secure. In Aguiar et al., 2008, some performance

limitations of the trajectory tracking are shown when is

compared with the path following strategy.

In Skjetne et al., 2003, motivated by Hauser et al., 1995,

is proposed a particular case of the general path following

methodology called maneuver regulation problem or ma-

neuvering problem which involves two tasks, the first and

most important called the geometric task which forces the

system output to converge to a continuous θ-parametrized

path, and the second task, called the dynamic task, is aim

to satisfy a desired dynamic assignment along the path. In

Hespanha et al., 2007, tracking and path following con-

trollers are proposed for a class of underactuated systems,

for the path following design is used the maneuvering

problem approach. In Akhtar et al., 2011 and Roza et al.,

2012, is proposed a maneuver regulation controller using

transverse linearization and in Rodriguez-Cortés, H. and

Velasco-Villa, M., 2011 is presented a nonlinear controller

for maneuver regulation of a car-like mobile robot using

input-output feedback linearization and a suitable Lyapunov

control function.

Section II presents the maneuvering control approach and

its application on a WMR of the type (2,0). In section III is

presented the maneuvering control design using nonlinear

control techniques. Section IV presents experimental results

in a laboratory platform. To measure the position and orien-

tation of the mobile robot we used a visual-based system

that provides the absolute localization. Finally, Section V

contains the conclusions.

II. MANEUVERING PROBLEM FOR A (2,0) WMR

In this section we present a general overview of the mat-

hematical model used for motion control design in WMRs.

The definition of the maneuvering problem in nonholono-

mic mechanical systems and its solution by the maneuvering

control design for WMRs is also presented.

II-A. Mathematical model

Possible mathematical models used for control design in

motion control problems are the kinematic and dynamic

models. However, most motion control problems in WMRs

are solved using the kinematic model (Morin and Sam-

son, 2008) because almost all WMR have an inner control

loop, which solves the velocity tracking problem and, from

a theoretical framework, the dynamic model may be seen

as a dynamic extension of the kinematic model. Some

WMRs are nonholonomic mechanical systems, i.e., they

have nonintegrable kinematics constrains of the form

A(q)T q̇ = 0 (1)

where q : R+∪{0} → Q is a vector function of generalized

coordinates which takes values in the configuration space

(manifold) given by Q, q̇ is the time derivative of q and A :
Q → R

n×m the nonholonomic constrains matrix function.

The general kinematic model for WMRs is given as

q̇ = G(q)u (2)
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where u : R+ ∪ {0} → U is the input vector function,

U the control space (manifold) and G : Q → R
n×m is

a matrix function where its columns form a base of the

null space of the nonholonomic constrains matrix function.

In this paper we consider a nonholonomic (2,0)-WMR. Its

kinematic model is given by the following set of differential

equations




ẋ

ẏ

ψ̇



 =





cosψ 0
sinψ 0
0 1





[

v

ω

]

(3)

where the vector of generalized coordinates q = [x y ψ]T

of the vehicle is in the configuration space given by the

smooth manifold Q = R
2×S1 with S1 the unit sphere and

input vector u = [v ω]T ∈ U ⊂ R
2 is the input vector with

v is the linear velocity and ω is the angular velocity. Figure

1 shows the geometric configuration of the robot.

Figure 1. Wheeled mobile robot type (2,0).

II-B. Maneruvering Control

In Hauser, J. et al., 1995 is introduced the concept of

maneuver in the context of motion control, which is stated

in the next definition.

Definition 1 (Maneuver): Consider system (2), a maneu-

ver is a curve in the state-control space that is consistent

with the system dynamics, i. e.,

η , {[qTr (θ), u
T
r (θ)]

T ∈ Q× U : θ ∈ R} (4)

such that
dqr

dθ
= G(qr(θ))ur(θ). (5)

Remark 1 (Consistency with WMRs kinematics): In our

problem, we are considering nonholonomic mechanical

systems represented by the general kinematic model (2) and

the consistency of the curve will satisfy if the nonholonomic

constrains are fulfilled.

Now, let Y = h(q(t)) be the output of system (2) which

takes values in the output space N ⊆ Q. Let P be a path

in the output space N represented by the 1-dimensional

manifold

Pd , {y ∈ N : θ ∈ D such that Y = Yr(θ)} (6)

parametrized by the smooth map θ 7→ Yr(θ) where D = R

or D = S1, according to the path. The output Y (t) is used

to specify a task (a trajectory or path).

Remark 2: Consider the task (6) given for specific Y .

If Y (t) converges to Yr(θ), then the correspondent state-

control curve [q(t) u(t)]T converges to [qr(θ) ur(θ)]
T .

Under remark 2, it is possible to define the maneuver

regulation problem in terms of the system output, as stated

in the next definition.

Definition 2 (Maneuvering Problem): Let Yd(θ) be a

path parametrization map and vs(θ, t) a speed profile for

(6). The maneuver regulation problem consists of two task:

Geometric task: Force system output Y to converge to

a desired path P ,

ĺım
t→∞

||Yr(θ)− Y (t)|| = 0 (7)

for any continuous function θ(t).
Speed assignment task: Force the path speed θ̇ to

converge to a desired speed vs(θ, t),

ĺım
t→∞

|θ̇(t)− vs(θ(t), t)| = 0. (8)

An important observation about the speed assignment is

given in the next remark,

Remark 3 (Speed assignment): For the speed assignment

vs(θ, t), we let a desired path speed (in m/s) be a comman-

ded input speed vd(t). Since the identity

||Ẏr(θ)|| = |vs(θ, t)|
√

x′r(θ)
2 + y′r(θ)

2 = vd(t) (9)

must hold along the path. Then, we get the speed assignment

vs(θ, t) =
vd(t)

√

x′r(θ)
2 + y′r(θ)

2
. (10)

Setting vd(t) = 0 will stop the WMR on the path, while

setting vd(t) > 0 will move the WMR in positive direction

along the path and vd(t) < 0 will move it in negative

direction.

To solve the maneuvering problem, in this paper we

define the method maneuvering control .

Definition 3 (Maneuvering control): Find a dynamic

output feedback controller, such that the maneuvering

controller

u = α(q, θ, qr , ωs), (11)

and the speed assignment algorithm,

ω̇s = S(ωs, q, θ, qr) (12)

with θ̇ = vs(θ, t) − ωs; solve the maneuvering problem.

II-C. Problem Statement

Let P ⊂ R
2 be a desired path for (3), parametrized by a

function yr(θ) ∈ C∞, with its first two derivatives bounded

and vs(θ, t) a speed profile assignment. Design a dynamic

output feedback control law as in definition (3) such that all

the closed-loop signals are bounded and the position of the

WMR given in (3) converges and remains on the desired

path. Moreover, in the presence of mobile robot localization

errors, the WMR type (2,0) position remains inside a tube

centered at the desired path.
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III. MANEUVERING CONTROLLER DESIGN

To design the maneuver regulation controller we suppose

that the mobile robot follows a virtual reference mobile

robot (VMR) with the same kinematics (3) as in (Morin

and Samson, 2008). In this case, a necessary condition for

the existence of a control solution is that the reference is

feasible according to Remark 1. Feasible paths are parame-

trized by smooth functions θ 7→ [xr(θ) yr(θ) ψr(θ)]
T on

θ ∈ R, which are solution of the robot’s kinematic model

(3) for a specific control ur(θ) = [vr(θ) ωr(θ)]
T called

reference control. So, the kinematic model for the virtual

reference robot is:




ẋr
ẏr
ψ̇r



 =





cosψr 0
sinψr 0
0 1





[

vr
ωr

]

(13)

where (xr, yr) are the coordinates of the point Pr, and ψr

is the orientation angle with respect to X (see Figure 2).

Figure 2. Following a reference vehicle

The reference control ur(θ) is a motion planning open-

loop controller that steers the virtual WMR from initial

condition qr(θ0) to describe a path as the one given in (6),

satisfying the WMR nonholonomic constrains. To determine

the reference or nominal control law, notice that from

equation (13) the first two equations can be rewritten as

x′r(θ)θ̇ = vr cosψr

y′r(θ)θ̇ = vr sinψr (14)

where z′(θ) = dz
dθ

. Equation (4) allows us to define vr and
ψr from (14) as,

vr = θ̇ [x′r(θ) cosψr + y′r(θ) sinψr]

ψr = arctan

(

y′r(θ)

x′r(θ)

)

.
(15)

By taking the time derivative of (15) we get

ωr =
θ̇
[

y′′r (θ)x
′

r(θ)− y′r(θ)x
′′

r (θ)
]

x′r(θ)
2 + y′r(θ)

2
(16)

with θ̇ as in Definition 3. Now, the problem is to determinate

a feedback control law (u, ω̇s) which asymptotically stabi-

lizes the path-following error. In the maneuvering problem

definition, the error used to define the geometric task (7) is

given by er(θ, t) = y(t) − yr(θ) which is defined with

respect to the desired path. However, in this paper we

consider and adequate global transformation of the original

vector error in the form




xe
ye
ψe



 =





cosψ sinψ 0
− sinψ cosψ 0

0 0 1









xr − x

yr − y

ψr − ψ



 (17)

Taking the time derivative of (17), we obtain the error

dynamics

ẋe = ωye − v + vr cosψe (18a)

ẏe = −ωxe + vr sinψe (18b)

ψ̇e = ωr − ω. (18c)

Notice that error dynamics ye is not directly affected

by the input v. To overcome this difficulty, we use the

idea of integrator backstepping (Krstic, Kanellakopoulos,

Kokotovic et al., 1995).

Given any fixed 0 < ǫ < π, let us introduce the set of

functions denoted by Φ∞

ǫ :

Φ∞

ǫ , {φ : R → (−π + ǫ, π − ǫ) : φ ∈ C∞, φ(0) = 0,

zφ(z) > 0 ∀z 6= 0 and φ′(z) is bounded}.
(19)

Setting xe = 0 and ψe = −φ(yevr), in (18b) implies that

ẏe = −vr sinφ(yevr) is uniformly stable at ye = 0. Then,

from the above observation, let ζ be a backstepping error

variable defined as

ζ(ψe, φ) , ψe(t) + φ(vrye). (20)

With (18c), the equation (20) is transformed into

ζ̇ =ωr + φ′(vrye)

(

∂vr

∂θ
(vs − ωs)ye +

∂vr

∂vs
v̇sye

+
∂vr

∂ωs

ω̇sye + v2r sin(ζ − φ)

)

− ω

(

1 + vrxeφ
′(vrye)

)

.

(21)

To add the desired speed profile vs(θ, t) for speed assign-

ment task (8), let ωs be another backstepping error variable

defined as

ωs(θ̇, θ, t) = vs(θ, t)− θ̇. (22)

The time derivative ω̇s of (22) is going to be used as an

additional control input in the control design process.

Consider the candidate Lyapunov function,

W (xe, ye, ζ, ωs) =
1

2
x2e +

1

2
y2e +

1

2γ
ζ2 +

1

2
k3ω

2
s (23)

with γ, k3 > 0. It can be directly verified that (23)

is a positive-defined, decreasing and radially unbounded

function.
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Taking the time derivative of (23) along the solutions of

(18a), (18b) and (21) yields

W (xe,ye, ζ, ωs) = xe[ωye − v + vr cos(ζ − φ)]

+ ye[−ωxe + vr sin(ζ − φ)] +
1

γ
ζ

[

ωr+

+ φ′(vrye)

(

∂vr

∂θ
(vs − ωs)ye +

∂vr

∂vs
v̇sye+

+
∂vr

∂ωs

ω̇sye + v2r sin(ζ − φ)

)

+

− ω

(

1 + vrxeφ
′(vrye)

)]

+ k3ωsω̇s.

(24)

After some computations

W (xe, ye, ζ, ωs) = xe[−v + vr cos(ζ − φ)+

−
1

γ
ζvrφ

′(vrye] + yevr sin(ζ − φ) +
1

γ
ζ

[

ωr+

+ φ′(vrye)

(

∂vr

∂θ
(vs − ωs)ye +

∂vr

∂vs
v̇sye+

+
∂vr

∂ωs

ω̇sye + v2r sin(ζ − φ)

)

− ω

]

+ k3ωsω̇s.

(25)

By choosing the maneuvering controllers v and ω as

v = vr cos(ζ − φ)−
1

γ
ζωvrφ

′(vrye) + k1xe (26)

ω = ωr + φ′(vrye)

(

∂vr

∂θ
(vs − ωs)ye +

∂vr

∂vs
v̇sye +

+ v2r sin(ζ − φ)

)

+ γyevr
sin(ζ)

ζ
cos(φ) + k2ζ.(27)

with k1, k2 ∈ R+. It is obtained

Ẇ (xe, ye, ζ, ωs) = −k1x
2
e − yevr cos(ζ) sin(φ)−

k2

γ
ζ2+

+

(

k3ωs +
1

γ
ζφ′(vrye)

∂vr

∂ωs

ye

)

ω̇s.

(28)

Defining ω̇s as

ω̇s = −

(

k3ωs +
1

γ
ζφ′(vrye)

∂vr

∂ωs

ye

)

(29)

we have that

Ẇ (xe, ye, ζ, ωs) = −k1x
2
e − yevr cos(ζ) sin(φ)+

−k2ζ
2 −

(

k3ωs +
1

γ
ζφ′(vrye)

∂vr

∂θ̇
ye

)2

(30)

which finally implies

Ẇ (xe, ye, ζ, ωs) ≤ −yevr cos(ζ) sin(φ). (31)

For initial conditions [x(t0) y(t0) ψ(t0)]
T near to the

path (6), i.e., in a ǫ−neighborhood of any yr(θ) ∈ P , it is

easy to verify that Imφ, Imζ ⊂ {β ∈ R : |β| < ε}. Then,

due to equation (19), we have that

Ẇ (xe, ye, ζ, ωs) = −yevrφ(yevr) < 0. (32)

Thus, the maneuvering problem has been solved by the

maneuvering control approach. The maneuvering controller

is u = [v w]T , where u, ω are defined in (26) and (27)

respectively and the speed assignment algorithm is given

by (29).

IV. EXPERIMENTAL RESULTS

To show the maneuver regulation controller performance,

let us consider the path

Pr = {[x y]T ∈ R
2 :

Yr(θ) = [a cos θ , b cos(θ) sin(θ)]T θ, r ∈ R}.
(33)

The correspondent maneuver is

qr(θ) =

[

a cos θ b cos θ sin θ arctan

(

− sin θ

b cos(2θ)

)]T

ur(θ) =
[

r(vs − ωs)
2 vs − ωs

]T
.

(34)

Together with the following specifications :

∂vr

∂vs
=

[

x′r(θ) cosψr + y′r(θ) sinψr

]

(35a)

∂vr

∂ωs

= −

[

x′r(θ) cosψr + y′r(θ) sinψr

]

(35b)

φ(vrye) = arctan(vrye) (35c)

∂vr

∂θ
=

[

∂vs

∂θ
−
∂ωs

∂θ

][

x′r(θ) cosψr +

+ y′r(θ) sinψr

]

+

+ (vs − ωs)

[

x′′r (θ) cosψr +

+ y′′r (θ) sinψr +

(

yr(θ) cosψr + (35d)

− x′r(θ) sinψr

)

∂ψr

∂θ

]

∂vs

∂θ
=

vs
√

x′r(θ)
2 + y′r(θ)

2

[

x′r(θ)x
′′

r (θ) +

+ y′r(θ)y
′′

r (θ)

]

(35e)

∂ωs

∂θ
=

ωs(k)− ωs(k − 1)

θ(k)− θ(k − 1)
. (35f)

where ωs(k) and θ(k) are the numerical values of the

variables in the k − th step of the program execution.

In the original system coordinates, the control input
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vector components are

ω = ωr + φ′(vrye)

(

∂vr

∂θ
(vs − ωs)ye +

∂vr

∂vs
v̇sye +

+ v2r sin(ψe)

)

+ γyevr
sin(ψe + φ)

ψe + φ
cos(φ) + (36)

+ k2(ψe + φ)

v = vr cos(ψe)−
1

γ
(ψe + φ)ωvrφ

′(vrye) + k1xe(37)

And the speed assignment algorithm is

ω̇s = −

[

k3ωs −
2r

γ
(ψe + φ)φ′(vrye)(vs − ωs)

]

.(38)

To implement the maneuvering controller, we need to

transform the linear velocity v and angular velocity ω of the

robot into angular velocities ωright and ωleft for the right

and left wheels of the WMR respectively. This is done by

the transformation,

ωrigt =
1

r
(v +mω)

ωleft =
1

r
(v −mω)

(39)

where r is the wheel radium and m the length between the

wheels of the robot.

For the experiment, we used a Garcia Robot (GR) from

Acroname which is a WMR of the type (2,0). To measure

the absolute position of GR, we used the vision based

system OptiTrack-Flex13 (see Figure 3), with a resolution

of 1.3 million pixels, 120 FPS sample rate, and 56◦ field

of view.

Figure 3. On the left OptiTrack and on the right GR.

In Table (I) the parameters for the experiment are defined.

Table I

EXPERIMENT PARAMETERS

x(0) = 0,4946m θ(0) = 0rad k = 1,22
y(0) = 1,2820m ωs(0) = 0,1 k2 = 1,55
ψ(0) = −2,8705rad γ = 50 k3 = 1,1
v(0) = 0m/s ω(0) = 0rad/s vd = 0,25m/s

Figure 4 shows the error behavior with respect to time,

subject to the input vector u. Error components converge to

zero, which implies system state converges to the desired

maneuver (33) with a settling time of 10 seconds.

0 10 20 30 40 50 60
−1

0

1

Time[s]

x e
[m

]

0 10 20 30 40 50 60
−2

0

2

Time[s]

y e
[m

]

0 10 20 30 40 50 60
−5

0

5

Time [s]

Ψ
e
[r

ad
]

Figure 4. Evolution of the error components.

In Figure 5 the behavior of the speed assignment variable

is shown. It is clear that this variable is appropriately

bounded. Also, the evolution of the path variable θ depicted.

0 10 20 30 40 50 60
0

0.005

0.01

0.015

Time[s]

ω s
[ra

d/
s]

Velocity assignment 

0 10 20 30 40 50 60
0

5

10

Path variable

Time[s]

θ[r
ad

]

Figure 5. Speed assignment vs and path variable θ.

Figure 6 shows the vector control components behavior

along the time.

0 10 20 30 40 50 60
0.2

0.4

0.6

0.8

1

Time[s]

v[
m

/s
]

Linear velocity controller

0 10 20 30 40 50 60
−4

−2

0

2

4

Angular velocity controller

Time[s]

ω
[ra

d/
se

g]

Figure 6. Linear velocity controller v and angular velocity controller ω.

In Figure 7 it is possible to see that the speed along the

curve for the point P of the WMR converges to vd, signal

was obtained by numerical differentiation.

0 10 20 30 40 50 60
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Speed assignment

Time[s]

||Ṗ
||[

m/
s]

Figure 7. Speed assignment for the point P = (x, y) of the WMR
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In (8) is the path that the system configuration followed.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Geometric curve VS Path followed

x[m]

y[
m

]

 

 

Geometric curve

Path followed

Figure 8. Real cartesian evolution and desired path Pr

Now, let’s suppose the absolute cartesian position is ob-

tained by the Xsen sensor MTi-G with a global positioning

system (GPS), then after a characterization of the sensor,

it has a cartesian position measurement error (CPME) with

variance 0,8m. In the scale of the experiment, that variance

is equivalent to 0,0175m. However, for the experiment we

consider 0,04cm of variance. After the experiment with

the similar initial conditions, the following results were

obtained

0 10 20 30 40 50 60
−2

0

2

Time[s]

x e
[m

]

0 10 20 30 40 50 60
−2

0

2

Time[s]

y e
[m

]

0 10 20 30 40 50 60
−5

0

5

Time [s]

Ψ
e
[r

ad
]

Figure 9. Evolution of the error components with CPME.
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0.5
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Time[s]

v[m
/s]

Linear velocity controller
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−4

−2

0
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Time[s]

ω[
rad

/se
g]

Figure 10. Control components subject to CPME.
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0

0.02

0.04

0.06
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Time[s]

||Ṗ
||[

m/
s]

Figure 11. Speed of point P = (x, y) with CPME.
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Figure 12. Real cartesian evolution with CPME and desired path Pr

V. CONCLUSIONS

The maneuvering problem was solved by a dynamic

feedback controller which consists of a state feedback

controller called maneuvering controller plus a speed as-

signment algorithm. The WMR configuration converged to

the correspondent maneuver to follow and remain at the

desired path. The experiments were carried out in an indoor

platform with the absolute position and orientation of the

system measured by a vision-based system. Experimental

results confirm the theoretical development of the work.

When the controller was subject to CPME, the system

position P converged and remained inside a tube centered

at the path.
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neuvering for a class of nonlinear systems’, Automatica 40(3), 373–
383.

CNCA 2013, Ensenada B.C. Octubre 16-18 758


