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laguilarb@ipn.mx

Phone Number: (52)-664-6231344

Resumen— The present work extends the L2-gain analysis
towards sliding mode dynamic systems and it is tested on
the super-twisting algorithm to illustrate that the resulting
closed-loop system is capable not only of rejecting matching
uniformly bounded disturbances, but also of attenuating
unbounded ones.
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I. INTRODUCTION

Sliding mode control algorithms are well recognized for
their useful robustness features against matching distur-
bances with a priori known bounds on their magnitudes.
Their capability of attenuating disturbances with a priori
unknown bounds on their magnitudes, which remain unat-
tended in the literature, constitute the topic of the present
investigation. First, the L2-gain analysis is extended toward
sliding mode dynamic systems and then it is tested on
a pre-selected sliding mode control algorithm, being the
popular super-twisting controller. It is thus demonstrated
that the super-twisting algorithm controller is capable of
not only rejecting matching bounded disturbances but also
of attenuating the ones of class L2.

II. NONSMOOTH L2-GAIN ANALYSIS

The L2-gain analysis, presented here, is based on the
game-theoric approach from (Basar and Bernhard, 1995)
and extends the results from (Isidori and Astolfi, 1992),
(Van Der Shaft, 1992), where investigations were confined
to smooth autonomous systems, towards locally Lipschitz
continuous autonomous systems.

A. Basic assumptions and definitions

The L2-gain analysis is developed for an autonomous
system of the form

ẋ = φ(x) + ψ(x)w(t) (1)

and is made with respect to the output

z = h(x). (2)

Hereinafter, x(t) ∈ Rn is the state vector, t ∈ R is the time
variable, w(t) ∈ Rr are the unknown disturbances, z(t) ∈
Rp, φ(x) : Rn 7→ Rn and h(x) : Rn 7→ Rp are vector
functions, and ψ(x) : Rn 7→ Rn×r is a matrix function.
The following assumptions are imposed on the system.

1) The functions φ(x), ψ(x), and h(x) are piecewise
continuous locally Lipschitz in x behind the discon-
tinuity manifold.

2) φ(0) = 0 and h(0) = 0 for almost all t.

Recall that the function φ(x) : Rn 7→ Rn is piece-wise
(locally Lipschitz) continuous iff Rn is partitioned into a
finite number of domains Gj ⊂ Rn, j = 1, . . . , N , with
disjoint interiors and boundaries ∂Gj of measure zero such
that φ(x) is (locally Lipschitz) continuous within each of
these domains and for all j = 1, . . . , N it has a finite limit
φj(x) as the argument x∗ ∈ Gj approaches a boundary
point x ∈ ∂Gj .

Assumption 2 is made to ensure that the origin is an
equilibrium point of the nominal (i.e., disturbance-free)
system whereas Assumption 1 admits the underlying sys-
tem to undergo discontinuities on the boundaries ∂Gj of
measure zero, which is why the precise meaning of the
differential equation (3) with a piece-wise continuous right-
hand side is throughout defined in the sense of Filippov.
For convenience of the reader, the following definition is
recalled from (Filippov, 1988).

Definition 1 Given the differential equation

ẋ = φ(x), (3)

let us introduce for each point x ∈ Rn the smallest convex
closed set Φ(x) which contains all the limit points of φ(x∗)
as x∗ → x, and x∗ ∈ Rn \ (∪N

j=1∂Gj). An absolutely
continuous function x, is said to be a solution of (3) if it
satisfies the differential inclusion

ẋ ∈ Φ(x). (4)
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Apart from this, we extend the L2-gain concept to the above
discontinuous system.

Definition 2 Given a real number γ > 0, further referred
to as a disturbance attenuation level, it is said that the
system (1) (locally) possesses L2-gain less than γ with
respect to output (2) (or, simply, system (1), (2) (respectively,
locally) possess L2-gain less than γ if the response z(t),
resulting from w(t) for initial state x(t0) = 0, satisfies∫ t1

t0

∥z(t)∥2dt < γ2
∫ t1

t0

∥w(t)∥2dt (5)

for all t1 > t0 and all piecewise continuous functions w(t)
(locally around the origin).

Definition 3 Respectively, system (1), (2) is said to have
L2-gain less than γ, locally around the origin, if there exists
a neighborhood U of the origin such that the inequality (5)
is satisfied for all t1 > t0 and all piecewise continuous
functions w(t) for which the state trajectory of the closed-
loop system starting from the initial point x(t0) = 0 remains
in U for all t ∈ [t0, t1].

For later use, the following instrumental results, inspired
from (Clarke, 1988), are involved.

Lemma 1 Let x ∈ Rn be an absolutely continuous function
of time variable t and let V (x) be a scalar locally Lipschitz
function around x ∈ Rn. Then the composite function V (x)
is absolutely continuous and its time derivative is given by

d

dt
V (x(t)) = DV (x(t), ẋ(t)) (6)

almost everywhere. Furthermore,

DV (x(t), ẋ(t)) ≤ ∂V

∂x
ẋ(t) (7)

for almost all t and for all supergradients
(
∂V
∂x

)T ∈ ∂V (x),
if any.

Lemma 2 Let system (3) possess a Lyapunov function
V (x). Then system (3) is stable. If in addition, the func-
tion V (x) is a strict Lyapunov function (and radially
unbounded) then system (3) is (globally) asymptotically
stable.

B. Hamilton-Jacobi inequality and their proximal solutions
System (1)–(2) is subsequently analyzed under the hy-

pothesis that
H) there exists a piecewise locally Lipschitz continuous,

positive definite, radially unbounded proximal solution
V (x) of the Hamilton-Jacobi inequality

∂V

∂x
φ(x) +

1

4γ2
∂V

∂x
ψ(x)ψT (x)

(
∂V

∂x

)T

+h(x)Th(x) ≤ −v(x) (8)

under some positive γ and some positive definite
function v(x).

A locally Lipschitz continuous function V (x) is said to
be a proximal solution of the partial differential inequality
(8) iff its proximal superdifferential ∂PV (x) is everywhere
non-empty and (8) holds with V (x) for all x ∈ Rn, φ(x) ∈
Φ(x), and for all proximal supergradients ∂V

∂x ∈ ∂PV (x).
The interested reader may refer (Clarke, 1988) for the
proximal superdifferential concept.

C. Global analysis

The following result presents sufficient conditions of the
nonsmooth system (1), (2) to be internally asymptotically
stable and to possess L2-gain less than γ.

Theorem 1 Let Assumptions 1 and 2 be in force, and let
Hypothesis H be satisfied (locally). Then the nominal system
(3) is globally (locally) asymptotically stable whereas its
disturbed version (1) possesses (locally) L2-gain less than
γ with respect to output (2).

Proof: It is clear that Lemma 1 is applicable to a
proximal solution V (x) of the Hamilton-Jacobi inequality
(8) viewed on the solutions x(t) of the disturbance-free
system (3). Then relations (6)–(8), coupled together, result
in

d

dt
V (x) = DV (x, ẋ) ≤ ∂V

∂x
ẋ =

∂V

∂x
φ(x) ≤ −v(x). (9)

where v(x) is some positive definite function.
Taking into account that (9) holds almost everywhere,

Hypothesis H thus ensures that V (x) is a strict radially
unbounded Lyapunov function of the nominal system (3).
By Lemma 2, system (3) is globally (locally) asymptotically
stable.

It remains to show that the disturbed system (1) (locally)
possesses L2-gain less than γ with respect to output (2).
For this purpose, let us introduce the multivalued function

H(x,w) =
∂V (x)

∂x
[ϕ(x) + ψ(x)w]+hT (x)h(x)−γ2wTw

(10)
where ∂V

∂x ∈ ∂PV (x). Clearly, the multi-valued function
(10) is quadratic in w. Then

∂H(x,w)

∂w

∣∣∣∣
w=α(x)

=
∂V (x)

∂x
ψ(x)− 2γ2αT (x) = 0 (11)

for α(x) = 1
2γ2ψ

T (x)
(

∂V (x)
∂x

)T
and ∂V

∂x ∈ ∂PV (x).
Expanding the quadratic function H(x,w) in Taylor series,
we derive that

H(x,w) = H (x, α(x))− γ2∥w − α(x)∥2 (12)

where H (x, α(x)) ≤ −v(x) due to (8). Hence,

H(x,w) ≤ −γ2∥w − α(x)∥2 − v(x) (13)
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and employing (10) and (12) we arrive at

∂V (x)

∂x
[ϕ(x) + ψ(x)w] ≤ −γ2∥w − α(x)∥2

−v(x)− ∥h(x)∥2 + γ2∥w∥2 (14)

By applying Lemma 1 and taking (14) into account, the
time derivative of the solution V (x) of the Hamilton-Jacobi
inequality (8) on the trajectories of (1) is estimated as
follows

d

dt
V (x) ≤ −γ2∥w−α(x)∥2−v(x)−∥z∥2+γ2∥w∥2 (15)

As a matter of fact, the latter inequality ensures that∫ t1

t0

(γ2∥w(t)∥2 − ∥z(t)∥2)dt ≥ V (x(t1))− V (x(t0))

+ γ2
∫ t1

t0

[∥w(t)− α(x(t))∥2 + v(x(t))]dt > 0 (16)

for any trajectory of (1), (2), initialized with x(t0) = 0.
Thus, inequality (5) is established thereby completing the
proof of Theorem 1.

III. L2-GAIN ANALYSIS FOR THE SUPER-TWISTING
ALGORITHM

In this section, we will develop the L2-gain analysis of
the algorithm governed by the following second-order sys-
tem based on the super-twisting algorithm (Levant, 1993):

ẋ1 = x2 − k1|x1|
1
2 sign(x1) + µ1(x)w1,

ẋ2 = −k3 sign(x1) + µ2(x)w2,
(17)

where x = [x1, x2]
T ∈ R2 is the state vector, w =

[w1, w2]
T ∈ L2 is the disturbance vector which is assumed

to be unknown, k1 and k3 are positive constants, and
µi(x) : R2 7→ R, i = 1, 2, are continuous functions. The
analysis will be made with respect to the output

z = [x1, x2]
T . (18)

If the system is referred to the observer, then the actuator
error is adsorbed in the term µ2(x)w2 only, whereas the
term µ1(x)w1 takes into account the measurement error
only.

It should be noted that the above system is represented
in the form (1), (2) if specified with

φ(x) =

[
x2 − k1|x1|

1
2 sign(x1)

−k3sign(x1)

]
, (19)

ψ(x) =

[
µ1(x) 0
0 µ2(x)

]
, (20)

h(x) = [x1, x2]
T . (21)

A. L2-Gain Analysis

Consider the positive definite function extracted from
(Moreno and Osorio, 2008)

V = 2k3|x1|+
1

2
x22 +

1

2
s2 (22)

where

s = x2 − k1|x1|
1
2 sign(x1). (23)

Let us verify that the Hamilton-Jacobi inequality (8) is
satisfied with the positive definite function (22)–(23). For
this purpose, let us denote H = H(x, α(x)), that is, the
notation H stands for the left-hand side of the Hamilton-
Jacobi inequality (8). Then by inspection, one derives that

H = −1

2
k1s

2|x1|−
1
2 + k3(s− x2)sign(x1)

+
1

4γ2

(
2k3sign(x1)−

1

2
k1s|x1|−

1
2

)2

µ2
1(x)

+
1

4γ2
(x2 + s)2µ2

2(x) + x21 + x22 (24)

where we used φ(x) = [s,−k3sign(x1)]T . Taking into
account that x2 = s + k1|x1|sign(x1) due to (23) and
using the well known inequality (a + b)2 ≤ 2a2 + 2b2,
the following upper bound

H ≤ −1

2
k1s

2|x1|−
1
2 − k1k3|x1|

1
2 +

2

γ2
k23µ

2
1(x)

+
1

8γ2
k21s

2|x1|−1µ2
1(x) +

1

2
γ2s2µ2

2(x)

+
1

2γ2
k21|x1|µ2

2(x) + x21 + 2s2 + 2k21|x1| (25)

is obtained.

In what follows, the perturbation term µ2(x)w2 is spec-
ified with µ2 = η

1
2
2 for ease of reference, whereas the

perturbation term µ1(x)w1 is of the form

µ1(x) = η
1
2
1 |x1|

1
2 , η1,2 ∈ R+ (26)

for ensuring that it escapes to zero as x goes to zero because
only such perturbations are recognized in the literature
(Moreno and Osorio, 2008) to admit attenuation. Then

H ≤ −
(
1

2
k1|x1|−

1
2 − 1

8γ2
η1k

2
1 −

2

γ2
η2 − 2

)
s2

−
[
k1k3−

(
2

γ2
η1k

2
3 −

1

2γ2
η2k

2
1 − |x1| − 2k21

)
|x1|

1
2

]
|x1|

1
2

≤ − ε∥
[
s |x1|

1
4

]T ∥22︸ ︷︷ ︸
v(x)

(27)
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where

0 < ε ≤ min

{(
1

2
k1|x1|−

1
2 − 1

8γ2
η1k

2
1 −

2

γ2
η2 − 2

)
,[

k1k3−
(

2

γ2
η1k

2
3 −

1

2γ2
η2k

2
1 − |x1| − 2k21

)
|x1|

1
2

]}
.

(28)

The Hypothesis H is thus locally satisfied for all x ∈ DG
where

DG =

{
x ∈ R2 : |x1|

1
2 <

4γ2k1
η1k21 + 16η2 + 16γ2

}
. (29)

and

k1k3 >

(
2

γ2
η1k

2
3 +

1

2γ2
η2k

2
1 + |x1|+ 2k21

)
|x1|

1
2 . (30)

From the above inequality and using (29), we can get

k3 >

(
2

γ2
η1k

2
3 +

1

2γ2
η2k

2
1 + 2k21

+

(
4γ2k1

η1k21 + 16η2 + 16γ2

)2
)(

4γ2

η1k21 + 16η2 + 16γ2

)
.

(31)

If we assume that the perturbation w1 does not affect the
system, i.e., η1 = 0 then

|x1|
1
2 <

4γ2k1
16η2 + 16γ2

(32)

k3 >
k21

8(η2 + γ2)

(
η2 + 4γ2 +

γ6

8 (η2 + γ2)
2

)
, (33)

will be necessary in order to meet the inequality (27). Thus,
we arrive at the following result.

Theorem 2 Let the parameter gains be such that k1 > 0
and (31) holds. Then the nominal system (3), (19) is locally
asymptotically stable within the attraction area x ∈ DG ⊂
R2, whereas its perturbed version (1), (19), (20) subject
to µ1(x) = η

1
2
1 |x1|

1
2 and µ2(x) = η

1
2
2 possesses L2-gain

less than an arbitrarily pre-specified γ > 0 with respect to
output z = x, locally within the region DG .

IV. L2-GAIN ANALYSIS FOR THE SUPER-TWISTING
ALGORITHM WITH PROPORTIONAL TERMS

Now, we analyze the super-twisting algorithm with pro-
portional terms, where the system is described by

ẋ1 = x2 − k1|x1|
1
2 sign(x1)− k2x1 + µ1(x)w1

ẋ2 = −k3sign(x1)− k4x1 + µ2(x)w2

(34)

with k2 and k4 being positive constants. The analysis will
be made with respect to the output (18). The above system

expressed in the form (1)–(2), is given by

φ(x) =

[
x2 − k1|x1|

1
2 sign(x1)− k2x1

−k3sign(x1)− k4x1

]
, (35)

ψ(x) =

[
µ1(x) 0
0 µ2(x)

]
(36)

h(x) = [x1, x2]
T . (37)

A. L2-Gain Analysis

In order to verify whether system (34), affected by the
disturbance w, possesses L2-gain less than γ with respect
to output (37), we consider the following positive definite
function, extracted from (Moreno and Osorio, 2008)

V = 2k3|x1|+ k4x
2
1 +

1

2
x22 +

1

2
s2 (38)

where

s = x2 − k1|x1|
1
2 sign(x1)− k2x1. (39)

First, we establish stability of the unperturbed system (34)
using the candidate Lyapunov function (38). Differentiating
this function along the system trajectories yields the time
derivative in the form

dV

dt
= −k2k4x21 − k1k4|x1|

3
2 − k2k3|x1|

− k1k3|x1|
1
2 − 1

2
k1|x1|−

1
2 s2 − k2s

2
(40)

which is negative definite for all x ∈ Rn. Thus, we establish
global asymptotic stability of the unperturbed system.

Now, let us verify that the Hamilton-Jacobi inequality (8)
is satisfied with the positive definite function (38)

H = −k2k4x21 − k1k4|x1|
3
2 − k2k3|x1| − k1k3|x1|

1
2

− 1

2
k1|x1|−

1
2 s2 − k2s

2 +
1

4γ2
(x2 + s)

2
µ2
2(x) + x21 + x22

+
µ2
1(x)

4γ2

(
2k3sign(x1)+2k4x1−s

(
1

2
k1|x1|−

1
2 + k2

))2

.

From (39) we have that x2 = s+ k1|x1|
1
2 sign(x1) + k2x1,

hence

H = −k2k4x21 − k1k4|x1|
3
2 − k2k3|x1| − k1k3|x1|

1
2

− k2s
2 +

1

4γ2

(
2s+ k1|x1|

1
2 sign(x1) + k2x1

)2
µ2
2(x)

− 1

2
k1|x1|−

1
2 s2 + x21 +

(
s+ k1|x1|

1
2 sign(x1) + k2x1

)2
+
µ2
1(x)

4γ2

(
2k3sign(x1) + 2k4x1 −

1

2
k1|x1|−

1
2 s− k2s

)2

.

CNCA 2013, Ensenada B.C. Octubre 16-18 631



Using the inequality (
∑4

i=1 ai)
2 ≤ 2

∑4
i=1 a

2
i , we have

H ≤ −k2k4x21 − k1k4|x1|
3
2 − k2k3|x1| − k1k3|x1|

1
2 − k2s

2

− 1

2
k1|x1|−

1
2 s2 +

2

γ2
s2µ2

2(x) +
1

2γ2
k21|x1|µ2

2(x) + x21

+
1

2γ2
k22x

2
1µ

2
2(x) + 2s2 + 2k21|x1|+ 2k22x

2
1 +

2

γ2
k23µ

2
1(x)

+
2

γ2
k24x

2
1µ

2
1(x) +

1

8γ2
k21|x1|−1s2µ2

1(x) +
1

2γ2
k22s

2µ2
1(x).

Setting µ2 = η
1
2
2 and taking µ1(x) as in (26) one obtains

H ≤ −
(
k2k4 −

1

2γ2
k22η2 − 1− 2k22

)
x21

−
(
k1k4 −

2

γ2
k24η1|x1|

3
2

)
|x1|

3
2

−
(
k2k3 −

1

2γ2
k21η2 − 2k21 −

2

γ2
k23η1

)
|x1|

− k1k3|x1|
1
2 −

(
1

2
k1 −

1

2γ2
k22η1|x1|

3
2

)
|x1|−

1
2 s2

−
(
k2 −

2

γ2
η2 − 2− 1

8γ2
k21η1

)
s2 ≤ − ε̃∥

[
x1 s

]T ∥22︸ ︷︷ ︸
v(x)

where

0 < ε̃ ≤ min

{(
k2k4 −

1

2γ2
k22η2 − 1− 2k22

)
,(

k2 −
2

γ2
η2 − 2− 1

8γ2
k21η1

)}
.

(41)

In order to keep the above inequality, it is necessary to
satisfy the following inequalities

|x1|
3
2 <

k1
η1
γ2 min

(
1

2k4
,

1

k22

)
(42)

k2 > max

(
2η2
γ2

+
k21η1
8γ2

+ 2,
k21η2
2γ2k3

+
2k3η1
γ2

+
2k21
k3

)
(43)

k4 >
k2η2
2γ2

+
1

k2
+ 2k2. (44)

The Hypothesis H is thus locally satisfied for all x ∈ DC
where

DC =

{
x ∈ R2 : |x1|

3
2 <

k1γ
2

η1
min

(
1

2k4
,

1

k22
.

)}
(45)

Summarizing, the following result is obtained.

Theorem 3 Let the positive parameter gains be such that
inequalities (43), (44) hold for an arbitrary γ > 0, fixed
a priori. Then the nominal system (3), (35) is globally
asymptotically stable and its perturbed version (1), (35),
(36) with µ1(x) = η

1
2
1 |x1|

1
2 and µ2(x) = η

1
2
2 possesses L2-

gain less than γ > 0 with respect to output z = x, locally

within the region DC .

Following the same line of reasoning, the global version
of Theorem 3 is established under the absence of the
disturbance w1.

Theorem 4 Let the parameter gains be such that k1, k3 >
0, and k2, k4 satisfies (43), (44), respectively; for an
arbitrary γ > 0. Then the nominal system (3), (35) is
globally asymptotically stable whereas its perturbed version
(1), (35), (36) with w1(x) = 0 and µ2(x) = η

1
2
2 globally

possesses a L2-gain less than an arbitrary γ > 0 with
respect to output z = x.

V. SIMULATION RESULTS

We run numerical simulations in Simulink in order to
corroborate that external harmonic disturbances w(t) ∈
R2, affecting the super-twisting algorithm (17) and the
super-twisting algorithm with proportional part (34), are
attenuated.

Figures 1(a) and 1(b) show the responses of the super-
twisting algorithm (17) initialized at x1(0) = 0.1 and
x2(0) = 1, considering

ψ(x) =

[
|x1|

1
2 0

0 1

]
(46)

and affected by the following disturbances for Figure 1(a):

w1 = sin(2πt), w2 =

 0 0 ≤ t < 3
60 3 ≤ t < 3.01
0 t ≥ 3.01

(47)

and the following disturbances for Figure 1(b):

w1 = sin(2πt), w2 =
2

t
1
3

cos(5πt) (48)

where w2 is unbounded of class L2.
These figures show the responses under γ = 0.5 (solid

line) and γ = 5 (dotted line).
Figures 2(a) and 2(b) show the responses of the super-

twisting algorithm with proportional part (34) with k1 =
k3 = 3 initialized at x1(0) = 0.1 and x2(0) = 1 considering
(46) and affected by the following disturbances for Figure
2(a):

w1 = 5 sin(2πt), w2 =

 0 0 ≤ t < 3
60 3 ≤ t < 3.01
0 t ≥ 3.01

(49)

and the following disturbances for Figure 2(b):

w1 = 4 sin(2πt), w2 =
5

t
1
3

cos(5πt). (50)

These figures show the responses under γ = 0.2 (solid
line) and γ = 5 (dotted line).

It is concluded from these figures that as predicted by the
theory, the disturbances are not rejected but only attenuated,
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(a) Disturbances given by (47).
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Figura 1. Responses of the perturbed super-twisting algorithm (k2 =
k4 = 0) where k1 = 4.5 and k3 = 6.1 for γ = 0.5 and k1 = 1.4 and
k3 = 0.9 for γ = 5.

that is, the system response is no longer rejected but it
remains bounded.

VI. CONCLUSIONS

L2-gain analysis, developed for the super-twisting algo-
rithm, has clearly shown its applicability to sliding mode
dynamic systems and the capability of the popular algorithm
to attenuate unbounded disturbances.
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Figura 2. Responses of super-twisting algorithm with proportional terms
where k1 = k3 = 3, k2 = 194 and k4 = 2806 for γ = 0.2 and
k1 = k3 = 3, k2 = 6.5 and k4 = 13 for γ = 5.
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