
Tracking and force control of a Scara robot under

a constraint using sliding mode control
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(emails: raul.rascon{drosas}@uabc.edu.mx).

Abstract— In this paper are proposed two control
algorithms, based on the sliding-mode technique, to track a
trajectory and regulate the force ejected by the end effector in
a 4-DOF Scara robot system subject to a position constraint.
The system may be in non-constrained motion at some time,
or in constrained motion at some other time. It is shown that
the nonlinear system is globally asymptotically stable and
achieves zero steady-state position error. Numerical results
show the performance of the proposed controllers.
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I. INTRODUCTION

Many applications in industry involve mechanical sys-

tems interacting with the environment. Examples can be

found in manufacturing automation, material handling by

robots, and space applications. In these applications, an

important issue is to model the complete dynamic behavior

so that the system and constraints are presented as a single

system (Ben Amor, B. et al., 2009). The formulation given

in (Ben Amor, B. and Haded, N.K. and Mnif, F., 2009)

describes systematically the complete behavior of a me-

chanical system interacting with an environment.

A problem shown in experiments performed on single

degree of freedom (1-DOF) robots is that force feed-

back sometimes produces an undesirable bounce behaviour,

where the robot repeatedly makes and loses contact with the

constraint surface. This behaviour is an example of a limit

cycle, and is likely caused by the nonlinearity (i.e., one-

sided) constraint (Goldsmith, P.B., 1996).

Friction forces, especially dry friction, which are rarely

taken into account in the design of controllers for me-

chanical systems with constraints, may produce negative

effects like tracking errors, limit cycles, or undesired stick-

slip motion, reducing considerably the performance of the

controlled system, see, e.g., (Canudas de Wit et al., 1995).

To solve the problem of controlling the trajectory and the

regulation of the effector force when it makes contact with

the constraint, a sliding mode control methodology may

be used (V. Utkin, 1992). The main feature of this class

of controllers is to allow the sliding mode to occur on a

prescribed switching surface, so that the system is governed

by the sliding equation only, and remains insensitive to a

class of disturbances and parameter variations (V. Utkin,

1978). This control method has been successfully tested for

motion control of robotic manipulators, see (Sabanovic A. et

al., 2008) and references therein. Besides, a previous work

of sliding-mode control in constrained robots can be found

in (Lian, Kuang-Yow et al., 1998).

More recently some novel control techniques have been

used, for example in (Fateh, Mohammad Mehdi et al., 2012)

it is used a decentralized Direct Adaptive Fuzzy Control

(DAFC) for tracking performance in a Scara robot, which

is electrically driven using the voltage control strategy.

Another recent work can be found in (Guangqiang Lu et

al., 2012) where an adaptive elastic method and an adaptive

viscosity compensation method are proposed in order to

save energy for periodic motion in a scara robot.

The problem addressed in the present paper is the trajec-

tory tracking and force regulation of a Scara robot subject to

a position constraint, where impacts may occur. This means

that the mechanical system may collide with a constraint,

represented by a fixed flat surface. Some previous works

of mechanical systems with unilateral constraints can be

found in (N. Mansard et al., 2008; Menini, L. et al., 2001).

Other previous works related to Scara robots can be found

in (Visioli, A. et al., 2002) where it is develop a con-

troller for trajectory tracking problem. In (Nakamura, M.

et al., 2000) is presented a contour control for a Scara

robot considering torque saturation constraints. In (Serhan

Yamacli and Huseyin Canbolat, 2008) are used a PD and

learning controllers to solve a trajectory tracking problem.

The system presented here is similar to those presented

in many mechanical systems, especially in the effector

subsystem (see, for example, (Brogliato, B., 1999; Leine,

Remco I. and Van de Wouw, Nathan, 2010)). It can display

an important dynamical behavior like rebounds, due to

collisions with the constraint, which may risk the integrity

of the mechanical device. Hence, we design controllers with

the aim of having a good trajectory tracking and force

regulation of the end effector, hence for the force on the

spring.

The main contribution of this paper is to extend some

results described before (Brogliato, B., 1999; Goldsmith,

P.B., 1996; Lian, Kuang-Yow and Lin, Chia-Ru, 1998) by

considering the presence of a not completely characterized

Coulomb friction, as well as some kind of matched, external

disturbance. In both cases we assume that only some bounds

on the friction coefficient and on the disturbance magnitude,
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are known. Also, different to (Z. Doulgeri et al., 2005), the

proposed control law, based on the sliding-mode technique,

is designed for the whole system, regardless of the motion

phase. That is, the mechanical system and the constraint

are modeled as a single system. This model allows us to

develop a controller whose purpose is, first to force the

system attain the constraint and, once this constraint has

been reached, maintain the contact of the system with the

constraint. We propose a sliding-mode control algorithm

using a sliding mode control which is designed for trajectory

tracking and also, a dynamic sliding surface designed for

position regulation. The controllers use measurements of

positions, velocities, and one controller is also designed to

compress the spring against the constraint surface.

The rest of the paper is outlined as follows: In Section

II we describe the dynamic model of the Scara robot

with position constraint. The state feedback design and its

stability analysis is presented in Section III. Section IV

presents experimental results, through numerical simula-

tions performed with MATLABr. Section V includes some

final comments.

Figure 1. Four dof scara robot with a position constraint

II. DYNAMIC MODEL

The dynamic model of the 4 DOF scara robot with a

position constraint (see Figure 1), can be expressed in Euler-

Lagrange equations as follows

M(q)q̈ + C(q, q̇)q̇ + F (q̇) = τ + w(t) (1)

m3d̈1 −m3g + f(ḋ1) + fc = τ4 + w4(t) (2)

where q(t), q̇(t), q̈(t) ∈ IR3 are the displacements, ve-

locities, and joint accelerations of the mechanical system

rotational links; M(q) ∈ IR3×3 is the inertia matrix,

which is symmetric and positive-definite for each q ∈ IR3;

C(q, q̇)q̇ is the vector of Coriolis and centrifugal forces;

G(q) ∈ IR3 is the gravitational forces vector; F (q̇) is the

vector of friction forces given by Coulomb friction type vec-

tor [α1sign(q1);α2sign(q2);α3sign(q3)], where α1 . . . α3 ∈
IR+, friction forces are considered bounded; w(t) ∈ IR3 is

Figure 2. Possible equilibrium points of the end efector.

the external perturbations vector, perturbations are consid-

ered unknown but bounded by an upper limit.

The prismatic joint acts as a decoupled system of (1),

where d1 is the position of the body with mass m3 ∈ IR+,

g ∈ IR is the gravitational constant, and the Coulomb

friction level is proportional to f(ḋ1) = α4sign(ḋ1), where

α4 ∈ IR+. The sign(ḋ1) denotes the signum function

defined as

sign(ḋ1) =















1 ḋ1 > 0

[−1, 1] ḋ1 = 0

−1 ḋ1 < 0

(3)

Moreover fc is the force acting on the spring, calculated

from

fc =

{

0, if d1 < d0,

k(d1 − d0), if d1 ≥ d0.
(4)

Parameter k is a positive stiffness coefficient, which we

assume to be known. The position d1 of the mechanical

system is set to d0 when the force sensor is in contact

with the surface and the spring is not compressed; that is,

when it delivers zero force. The mass m3 is driven by τ4 ∈
R. We consider that the constraint is a rigid surface. To

account for discrepancies in the model, an unknown external

disturbance w4(t) ∈ R has been introduced, with an upper

bound M4 that is assumed known a priori, so it satisfies

sup
t

|wi(t)| ≤ Ai, (5)

sup
t

|w4(t)| ≤ A4, (6)

for all t, with i = 1 . . . 3 and some constants Mi > 0.

For a constant force input τ4 = τ̄4 and zero disturbance

(w4 = 0), the system (2) has the following equilibrium

points if we want the tip to be on the constraint, in steady

state, if it is satisfied m3g > α4 then it is enough to

choose τ̄4 = fd = 0, if it is satisfied m3g ≤ α4 then

we must choose τ̄4 = fd > α4 − m3g where fd is the

desired force in the spring. This force must be a positive

constant. Therefore, the equilibrium region of interest can

be considered as (d̄1 ∈ [(−α4 +m3g + fd)/k + d0, (α4 +

m3g+fd)/k+d0],
˙̄d1 = 0), as shown in Figure 2. Given that

in system (2) the position feedback is used, instead of force

feedback, then the position of the surface and the stiffness

of the sensor must be known to achieve the desired contact

force. A rebound occurs when a transition from constrained

motion (d1 ≥ d0) to free motion (d1 < d0) exists.

III. CONTROL DESIGN

First of all, it is going to be designed a trajectory

tracking controller for the links q1, q2, and q3, the control

methodology chosen for this purpose is sliding mode control

due its robustness properties again external perturbations,
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parametric uncertainties and friction. Later, considering as

a decoupled system the translational link d1, it is designed

a force regulation controller through integral sliding mode

control methodology due to the aforementioned properties.

A. Trajectory Tracking Control

Let us suppose that the disturbances w1(t) . . . w3(t) af-

fecting system (1) satisfy (5), and the Coulomb friction

coefficients are such that 0 < αi ≤ Bi, for some known

bound Bi with i = 1 . . . 4. The control objective is to

find a control τ , depending on the angular positions q =
[q1, q2, q3]

T and velocities q̇ = [q̇1, q̇2, q̇3]
T , such that the

closed-loop response of system (1) satisfies

lim
t→∞

|q(t)− qd(t)| = 0. (7)

where qd(t) ∈ IR3 are periodic desired trajectories to be

followed by each link qi.
A sliding mode control law is proposed for the system

(1), first let us consider a sliding surface given by

s = µe+ ė (8)

where e = [q1 − qd1, q2 − qd2, q3 − qd3]
T , and ė = [q̇1 −

q̇d1, q̇2−q̇d2, q̇3−q̇d3]
T , µ ∈ IR3×3 is a diagonal gain matrix

with positive coefficients.

One control law that can assure us the fulfillment of (7)

is given by

τ = C(q, q̇)q̇ − β
s

‖s‖
−M(q)(µė+ λs− q̈d); (9)

where β, λ ∈ IR3×3 are diagonal gain matrixes with positive

coefficients, s = [s1, s2, s3]
T .

The objective for proposing a controller with such struc-

ture is to satisfied that sT ṡ < −sTλs − β‖s‖. The closed

loop system (1) using the controller takes the form

q̈ = M−1(q)

[

−F (q̇)− β
s

‖s‖
+ w

]

− µė− λs+ q̈d (10)

B. Stability Analysis

Lets analyze in this section the stability of the closed-

loop system (10), controlled by (III-A), and conclude about

the stability. Now, can be ensured the existence of sliding

modes by verifying sT ṡ < 0. To this end, note that, from

(5) and the fact that αi ≤ Bi, then

sT ṡ = s
(

−M−1(q)
[

F (q̇) + β s
‖s‖ − w

]

− λs
)

≤ −λmin{M
−1(q)}λmin{β}‖s‖

+λmax{M
−1(q)}

∑

i=1,2,3

(Ai +Bi)‖s‖

−sTλs

≤ −
(

λmin{M
−1(q)}λmin{β}

−λmax{M
−1(q)}

∑

i=1,2,3

(Ai +Bi)
)

‖s‖

−λ‖s‖2

Can be concluded the existence of sliding modes on

the surface s = µe + ė while the condition 0 <

λmax{M
−1(q)} (Ai +Bi) < λmin{M

−1(q)}λmin{β} be

satisfied using i = 1, 2, 3. This gives a guide to tune the

coefficients of β matrix in the controller (III-A). In fact, it

can be demonstrated that the trajectories reach the surface

s = 0, in finite time, using the quadratic function

V (s) = sT s, (11)

and compute its time derivative along the solutions of (10),

V̇ (s(t)) ≤ −2λ‖s‖2 − 2
(

λmin{M
−1(q)}λmin{β}

− λmax{M
−1(q)}

∑

i=1,2

(Ai +Bi)
)

‖s‖

≤ −2
(

λmin{M
−1(q)}λmin{β}

− λmax{M
−1(q)}

∑

i=1,2

(Ai +Bi)
)

‖s‖

= −2
(

λmin{M
−1(q)}λmin{β}

− λmax{M
−1(q)}

∑

i=1,2

(Ai +Bi)
)

√

V (s(t)).

(12)

From (12) it follows that V (t) = 0 for

t ≥t0 +

√

V (t0)

λmin{M−1(q)}λmin{β} − λmax{M−1(q)}
∑

i=1,2

(Ai + Bi)

tf =t0 +

√

V (t0)

λmin{M−1(q)}λmin{β} − λmax{M−1(q)}
∑

i=1,2

(Ai + Bi)
.

(13)

Hence, V (t) converges to zero in finite time and, in

consequence, a motion along the manifold s = [0, 0, 0]T

occurs in the discontinuous system (10). Notice that the

reaching time can be reduced by increasing the value of

the main diagonal coefficients in β matrix. Thus, in the

following development, we assume that system (10) is in

sliding mode; therefore, s = ṡ = 0 for t ≥ tf .

Now let us show that, while the system remains in s = 0,

the trajectories (q, q̇) converge to zero as t → ∞. From (8),

and the dynamics of system (10), once in sliding mode, are

reduced to

ė = −µe. (14)

Note that system (14) has only one equilibrium point placed

at the origin, which is locally asymptotically stable.

C. Force Regulation Control

Now the disturbance w4(t) affecting system (2) satisfies

(6), and the Coulomb friction coefficient is such that 0 <
α4 ≤ B4, for some known bound B4. The control objective

is to find a control τ4, depending on the desired force

fd ∈ IR+ (via a desired position dd1), the generalized

displacement d1 and velocity ḋ1, such that the closed-loop

response of system (2) satisfies

lim
t→∞

|f(t)− fd| = 0. (15)
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For control purposes the expression for fc in (4) can be

rewritten as

fc(d1, d0) =
k

2
(d1 − d0 + |d1 − d0|) ∀ d1 ∈ R. (16)

A integral sliding mode control law is now proposed for

system (2), first let us consider a sliding surface given by

s4 = µ4d1 + ḋ1 + γ

∫ T

0

[f(d1, d0)− fd] dt, (17)

where µ4, γ ∈ IR+ are gain constants.

One control law that can assure us the fulfillment of (15)

is given by

τ4 = fc−β4sign(s4)−m3

(

g + λ4s4 + γ(fc − fd) + µ4ḋ1

)

;

(18)

where λ4, β4, γ and µ ∈ IR are tunable gain coefficients.

The objective for proposing a controller with such struc-

ture is to satisfied that sṡ < −λ4s
2
4 − β4|s4|. Since the

sliding surface (17) is a dynamical variable, we can add s
as another state in (2). This leads to the extended system

d̈1 = −λ4s4 − β4sign(s4)− γf̃ − µ4ḋ1 +
w4

m3
−

α4

m3
sign(ḋ1)

ṡ = µ4ḋ1 + d̈1 + γf̃
(19)

where f̃ = fc(d1, d0) − fd. Now, we ensure the existence

of sliding modes by verifying s4ṡ4 < 0. To this end, note

that, from (6) and the fact that α4 ≤ B4, then

s4ṡ4 = s4

(

−λ4s4 −
β4

m3

sign(s4) +
w4

m3

− α4

m3

sign(ḋ1)
)

≤ −λ4s
2
4 −

β4

m3

|s4|+
A4+B4

m3

|s4|

≤ −λ4s
2
4 −

(

β4−(A4+B4)
m3

)

|s4|.

Can be concluded the existence of sliding modes on the

surface s4 = µ4d1 + ḋ1 + γ
∫ T

0
[f(d1, d0)− fd] dt while

the condition β4 > A4+B4 be satisfied. This gives a guide

to tune the parameter β4 of the controller (III-C). It can be

demonstrated that the trajectories reach the surface s4 = 0,

in finite time, using the quadratic function V (s4) = s24.

The development is very similar to the previous one of the

trajectory tracking controller, therefore it is omitted.

Now let us show that, while the system remains in s4 = 0,

the trajectories (d1, ḋ1) converge to zero as t → ∞. From

(16), (17) and, given that fd = k(dd1−d0+ |dd1−d0|)/2 >
0, we have that the dynamics of system (19), once in sliding

mode, and considering y1 = d1 − dd1, y2 = ḋ1 are reduced

to

ẏ1 = y2,

ẏ2 = −
kγ

2
(y1 + |y1 + dd1 − d0| − |dd1 − d0|)− µ4y2.

(20)

Note that system (20) has only one equilibrium point placed

at the origin, which is locally asymptotically stable, due to

dd1 > 0.

Notation Description Value Units

m1 Mass of link 1 0.38 kg

m2 Mass of link 2 0.34 kg

m3 Mass of link 3 0.25 kg

l1 Length of link 1 0.297 m

l2 Length of link 2 0.297 m

I1 Inertia of link 1 0.243×10
−3 kg m2

I2 Inertia of link 2 0.068×10
−3 kg m2

I3 Inertia of link 3 0.015×10
−3 kg m2

g Gravity 9.80665 m/s2

k Spring stiffness constant 500 N/m

d0 Distance from link 3 to the constraint surface 0.5 m

TABLE I

4-DOF ROBOT SCARA PARAMETERS.

IV. SIMULATION RESULTS

Performance issues and robustness properties of the pro-

posed sliding mode controllers have been tested with some

numerical experiments under the following parameters of

the Scara robot as can be seen in Table I

The dynamical model, based on the positions, velocities

and the dynamics of the sliding surface s as in (10) and

(19), is studied with the following parameters: desired

trajectories qd1 = 0.1 sin(t) rad, qd2 = 0.2 cos(t) rad,

qd3 = 0.1 sin(t) rad, desired force fd = 5 N, fric-

tion coefficients α = [0.2N.m, 0.1N.m, 0.1N.m, 0.1N ].
The feedback controllers coefficients are set to λ =
[40N.m, 40N.m, 40N.m, 10N ] , the sliding surface co-

efficients µ = [5kg/s, 20kg/s, 30kg/s, 2kg/(m.s)] ,

the gain coefficients of the signum function β =
[0.6N.m, 0.6N.m, 0.7N.m, 1N ] , and the gain of force

γ = 1 m−1. The desired position is set to dd10.51 m.

The initial values of the position error, velocity and sliding

surface s were set to q1(0) = π/4rad q2(0) = π/4rad,

q3(0) = π/4rad, d1(0) = 0m , q̇(0) = [0, 0, 0]rad/s, ḋ1 =
0m/s and s4(0) = 0.1, respectively. Perturbations were set

to w1 = 0.3 sin(t)rad, w2 = 0.4 cos(t), w3 = 0.4 sin(t) and

w4 = 0.2 sin(t).
Figure 3 displays the numerical responses of the system,

such trajectory tracking, position error, sliding mode and

control input, all of them are the link q1 parameters. Figures

4, 5 and 6 show the same parameters as the aforementioned

Figure 3 but for links q1, q3 and d1, respectively. Note

also that, even that Coulomb frictions and external distur-

bances are present, the controlled system exhibits robustness

against perturbations and Coulomb frictions in each link.

Finally, Figure 7 shows how the end effector reaches the

desired contact force in approximately 5 s.

V. COMMENTS

In an experimental platform, one of the disadvantages

of using these types of controllers are the theoretically

endless commutations of the control signal, that may lead

to a damage on the actuators. Although in control signal

the number of commutations are theoretically infinite, in

real life it presents a finite number of commutations due to

physical limitations of the actuators.

In real experiments if the control signal does not reach the

switching frequency specified by the theoretical analysis,
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Figure 3. Rotational link q1.
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Figure 4. Rotational link q2.
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Figure 5. Rotational link q3.
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Figure 6. Translational link d1.

CNCA 2013, Ensenada B.C. Octubre 16-18 608



0 2 4 6 8 10
0

5

10

15

20

25

30

35

40

time [s]

fo
rc

e
 [
N

]

Figure 7. Contact force of the end effector.

it may cause an error in steady state. Nowadays there are

brushless actuators that could be implemented using sliding

mode control, this type of control render a robust close-loop

system, even in the presence of certain type of parametric

variations and not completely know parameters.

By the other hand, in our numerical approach the two

controllers synthesized, one of them using sliding-mode

control and the other one dynamic sliding-mode control

technique, rendered a robust closed-loop system. The con-

vergence in finite time of the controlled system trajectories

to the sliding surface, and asymptotically to the unique

equilibrium point, was proved. Some numerical results

were performed, showing good agreement and robustness

performance.
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