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Abstract— This work considers the stabilization of unstable
first order linear processes with I/O delay term. A new
result is present including a simple static estimated (predicted)
”state” feedback scheme. In this approach, an observer is
designed including the plant model with two static gains and
the controller consists of only two static gains. The compete
schema allows to stabilize first order delayed systems with
delays restricted to τ < 4τun, where τun is the unstable time
constant in the process.

I. INTRODUCTION

Time delays are present practically in any dynamical sys-

tems due mainly to phenomenon like information, material

or energy transport; however, they take central importance

when the delay are large enough when compared to the

dominant time constant in the system. The stabilization of

unstable processes with I/O delay is a challenging problem

from both design and analysis standpoints. The key issue

is to design a feedback control input acting sufficiently fast

to counteract the unstable process dynamics. The general

problem is still poorly understood and, in contrast to the

stable counterpart, only a limited number of results are

available in the literature. Some reports have considered

the first order process,

Y (s)

U(s)
=

b

s− a
e−τs (1)

with a > 0 and b > 0, as a benchmark for establishing

necessary and/or sufficient conditions for process stabi-

lization under a designed feedback control strategy. By

considering that τun = a−1 can be seen as the unstable

time-constant of the process, (Seshagiri R.A. et al., 2007)

proposed a modified Smith predictor to show sufficient

stabilization conditions for τ < 1.5τun. (Nesimioglu B.S

and Soylemez M.T., 2010) computed all stabilization pro-

portional controllers for Eq. (1). (Hwang C and Hwang

J.H., 2004) used the D-partition technique to estimate the

stabilization limits of PID compensation, showing that the

process given by Eq. (1) can be stabilized if τ < τun.

(Michiels W. et al., 2002) proposed a partition of the delay

operator e−τs into e−τ1s and e−τ2s acting respectively in

the input and output channels to show that stabilization of

Eq. (1) can be achieved if τ < 2τun. (Silva G.J and Bhat-

tacharyya S.P., 2005) provided a complete characterization

of the PID compensators for Eq. (1).

In (Del Muro Cuéllar B. et al., 2012) is analyzed the

use of observer (predictor) based controllers, with special

attention to the case of continuous first order linear unstable

processes subject to large input-output time delays, with

special interest to the case τ < 2τun. In this work a con-

troller is provided allowing the stabilization of systems with

τ < 3τun. In (Marquez Rubio J.F. et. al, 2012a)[Marquez et

al 2012 (agregar cita)], the same approach is used including

the use of PID controllers and allowing to stabilize systems

with delay restricted to τ < 4τun.

This work uses the delay splitting strategy (Michiels W, et

al., 2002) to extend the recent results in (Del Muro Cuéllar

et al., 2012) by showing that stabilization can be achieved

if τ < 4τun. The feedback control design is based on

the estimation of intermediate delayed states at the input

and output channels to fed-back these signals in order to

counteract effects of the unstable pole. A numerical example

are used for illustrating the parametric stability region of the

observer-based compensator.

II. MAIN RESULTS

Consider the process Eq. (1) rewritten as follows,

Y (s)

U(s)
= e−τ1sG(s)e−τ2s (2)

where τ1 = τ2 = τ/2. For simplicity in notation, let G(s) =
b

s−a denote the delay-free process. Regarding the state

feedback depicted in Figure 1, the following preliminary

result can be established.

Lemma 1: Consider the stabilizing scheme shown in

Figure 1. There exist constants f1 and f2 such that the

closed-loop system,

Y (s)

U(s)
=

be−τs

(s− a)(1 + g1e−τ2s) + g2be−τ2s
(3)

is stable, if and only if, τ2 < 2

a .

Proof: The proof of this lemma is provided in Ap-

pendix.
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Figura 1. Static state feedback.

Corollary 1: Consider the stabilizing scheme shown in

Figure 1. If τ2 < 2

a , then the parameters f1 and f2 such that

the closed-loop transfer function 3 is stable can be computed

by considering the inequalities aτ2− 1 < f1 ≤ aτ2− 1+ ǫ,
a
b (f1+1) < f2 ≤ a

b (f1+1)+ ǭ, for some constants ǫ, ǭ > 0.

Proof: The proof of this result is given in Appendix

The main idea of Corollary 1 is that, if τ < 2/a, then the

stabilizing region for parameter g1 is completely determined

by aτ2 − 1 < g1 < 1. Once a particular g1 value has been

selected, a simple frequency domain analysis can be done

for the transfer function,

Ḡ(s) =
b

s− a

e−τ1s

1 + g1e−τ1s
(4)

obtaining the stability gain margins for g2; getting the

already known lower bound (a/b)(g1+1) and the unknown

upper bound θ. Note that this transfer function can easily

be analyzed using the computational software MATLAB.

Applying this procedure to the set of g1 values along

(aτ2 − 1, 1) it is possible to obtain the complete stability

region of parameters g1 and g2.

The result presented in Lemma 1 is the fundamental key

in this work. A dual version of the proof was presented in

(Marquez Rubio J.F. et. al, 2012b). In a dual way to the

previous lemma, it can be stated the following result.

Lemma 2: Consider the stabilizing output injection

scheme shown in Figure 2. Then, there exist constants g1
and g2 such that the closed loop system,

Y (s)

U(s)
=

be−τ2s

(s− a)(1 + g1e−τ2s) + g2be−τ2s
(5)

is stable if and only if τ2 < 2

a .

Proof: The proof of this lemma can be done in a dual

way to the proof of Lemma 1.

Corollary 2: Consider the stabilizing output injection

scheme shown in Figure 2. If τ2 < 2

a , then the parameters

g1 and g2 such that the closed-loop transfer function 5

is stable can be computed by considering the inequalities

aτ2−1 < g1 ≤ aτ2−1+ǫ, a
b (g1+1) < g2 ≤ a

b (g1+1)+ ǭ,
for some constants ǫ, ǭ > 0.

Proof: The proof of this result can be obtained from

a dual view point of Corollary 1.

Figura 2. Output injection feedback.

Figura 3. Proposed observer

As a consequence of the previous results we can state the

following result.

Theorem 1: Consider the observer scheme shown in Fig-

ure 3. Then, there exist constants g1 and g2 such that

lim
t→∞

[ω̂(t)− ω(t)] = 0 if and only if τ2 < 2

a .

Proof: The proof can be done by taking into account

the stability conditions given in Lemma 2. With this aim,

consider the dynamics of the prediction scheme shown in

Figure 3 that can be written in state space form as,

[
·

ω(t)
·

ω̂(t)

]
= A1

[
ω(t)
ω̂(t)

]
+A1

[
y(t)
ŷ(t)

]

+

[
b
b

]
u(t− τ1)

[
y(t+ τ2)
ŷ(t+ τ2)

]
= A2

[
ω(t)
ω̂(t)

]
+A2

[
y(t)
ŷ(t)

]

with,

A1 =

[
a 0
0 a

]
, A1 =

[
0 0
bg2 −bg2

]

A2 =

[
1 0
0 1

]
, A2 =

[
0 0
g1 −g1

]

and ω̂(t) the estimation of ω(t). Defining first the state

prediction error eω(t) = ω(t) − ω̂(t) and the output

estimation error ey(t) = y(t)−ŷ(t) it is possible to describe
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Figura 4. Proposed stabilization strategy.

the behavior of the error signal as
[

ėω(t)
ey(t+ τ2)

]
=

[
a −bg2
1 −g1

] [
eω(t)
ey(t)

]
. (6)

Consider now a state space realization of system (5) (de-

scribed in Figure 2) that can be written as,
[

·

x(t)
y(t+ τ2)

]
=

[
a −bg2
1 −g1

] [
x(t)
y(t)

]
+

[
b
0

]
u(t−τ1).

(7)

It is clear that the stability conditions of system (7), given

in Lemma 2, are equivalent to the ones of system (6), from

where, the result of the theorem follows. Considering the

previous results, from Lemma 1, the state feedback system

is stable if and only if τ1 < 2

a and from Lemma 2 the state

can be estimated if and only if τ2 < 2

a .

Based on this result, the following theorem can be estab-

lished.

Theorem 2: Consider the estimated state feedback

scheme shown in Figure 4. Then, there exist constants f1,
f2, g1 and g2 such that such that the closed loop is stable

if and only if τ < 4

a .

III. SIMULATION RESULTS

The effectiveness of the proposed methodology will be

now evaluated by means of a numerical example.

Example 1. Now, consider the unstable delayed process

given by the transfer function,

Y (s)

U(s)
=

3

s− 1
e−τs (8)

with τ = 2.8. Time delay satisfies τ < 4

a , from Theorem

2 there exist gains g1, g2, f1 and f2 that stabilize the

closed-loop system shown in Figure 4. In this case it is

considered τ = τ1+τ2 with τ1 = τ2 = 1.4. From Corollary

2, 0.4 < g1 < 1 and (a/b)(g1) + 1 < g2 < θ. As

mentioned previously, with the help of a frequency domain

analysis, it is possible to get, for every g1 value satisfying

0.4 < g1 < 1, all the corresponding values of g2 that

stabilize the scheme of Figure 2. The set of g2 values were

computed with MATLAB and the complete stability region

for parameters g1, g2 is depicted in Figure 5 (or by duality
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Figura 5. Stability region g1 − g2, Example 1

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

20

Time

y
(t

)

Figura 6. Output response, Example 1

f1−f2) that stabilize the observer-controller scheme. For the

simulation, g1 = f1 = 0.75 and g2 = f2 = 0.61 were used.

Figure 6 shows the performance of the output signal y(t)
when a step input reference of magnitude 0.5 is regarded.

For the simulation the exact value of the plant parameters is

assumed to be known and initial conditions different from

zero are also considered. Figure 7 presents the estimation

error eω(t) = ω(t)− ω̂(t).

IV. CONCLUSIONS

This work showed that the incorporation of intermedi-

ate delayed states within the feedback loop can enlarge

the range of the delays for the stabilization of unstable

processes. While simple proportional feedback can yield

stabilization if τ < τun, the proposed observer-based

compensation can lead to stabilization for τ < 4τun.

This improvement motivates the development of systematic

strategies for unstable systems with large I/O delay effects.
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Figura 7. Error eω(t), Example 1

APPENDIX

Proof of Lemma 1 Based on the splitting strategy of τ ,

system (3) can be rewritten as,

Y (s)

U(s)
=

be−τ2s

(s− a)(1 + f1e−τ2s) + f2be−τ2s
e−τ1s

Note from that the delay term e−τ1s does not affect the

stability of the closed-loop system (since is on the direct

loop). Therefore, it is considered the expression,

Y (s)

U(s)
=

be−τ2s

(s− a)(1 + f1e−τ2s) + f2be−τ2s

Consider now a discrete-time version of the original plant

G(s)e−τ2s together with the scheme given in Figure 1. To

carry out this task, it is assumed that there exist a sampling

period T that satisfies the condition T = τ2
n for an integer

n and that a zero order hold is located at the input of the

system. Under these conditions, the discrete-time closed-

loop transfer function is,

Y (z)

U(z)
=

(b/a)(eaT − 1)

(z − eaT )(zn + f1) + f2(b/a)(eaT − 1)
, (9)

with the characteristic polynomial given by,

p1(z) = (z − eaT )(zn + f1) + f2(b/a)(e
aT − 1). (10)

The proof of the theorem is based on demonstrate that all

roots in (10) lie inside the unit circle when it is considered,

lim
n→∞

τ2
n , if and only if, τ2 < 2

a .

To begin with, consider first the simple case when f1 = 0
in (10), this produces the characteristic equation,

(z − eaT )zn − f2(b/a)(e
aT − 1) = 0. (11)

The root locus diagram (W. R. Evans, 1954) associated to

(11) shows that the open-loop system has n poles at the

origin and one at z = eaT . Then, there exist n+1 branches

to infinity, n − 1 of them starting at the origin and going

directly to infinity. The two remaining branches starting at

a breaking point z1 located over the real axis between the

0 e^(aT)

0

Root Locus

Real Axis

Im
a
g
in

a
ry

 A
x
is

e
aTz

1

Figura 8. Root locus of equation (11) for n = 5.

origin and z = eaT (this situation is illustrated in Figure

8 for the case n = 5). z1 can be found by considering the

equation,

df2
dz

=
d

dz

[
−
zn(z − eaT )
b
a (1− eaT )

]
= 0,

that produces,

(n+ 1)zn − nzn−1eaT = 0,

which has n− 1 roots at the origin and one at,

z1 =
n

n+ 1
ea

τ2

n .

If the breaking point z1 over the real axis is located inside

the unit circle, the closed loop system could have a region of

stability, otherwise will be unstable for any f2. The stability

properties of the continuous system (3) are obtained by

considering the limit as n → ∞, or equivalently, when

T → 0, this is,

lim
n→∞

z1 = lim
n→∞

n

n+ 1
ea

τ2

n = 1. (12)

It is important to note that any point s = θ, over the

real axis on the complex plane s is mapped to z = eθT on

the z plane and as a consequence this point converges to

z = 1 when T tends to zero. Notice also that any real point

s = θ on the left half side of the complex plane (θ < 0)

is mapped to a point eθT that tends to one over the stable

region of the z plane. On the contrary, if θ is on the right

side of the complex plane over the real axis (θ > 0), the

point eθT tends to one over the unstable region. Then, from

(11), it is not difficult to see that if aτ2 < 1 (i.e., τ2 < 1/a)

there exists a gain f2 that stabilizes the closed loop system

(i.e., the limit tends to one from the left). In the case that

aτ2 ≥ 1 (always considering f1 = 0) it is not possible to

get f2 that stabilize the system.

Consider now the case f1 6= 0. Applying again a root

locus analysis for system (9) and its characteristic equation
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(10), as f1 grows from zero, the breaking point over the

real axis moves in the root locus diagram (indeed, goes to

the left). This point can be found by taking into account the

equation,

df2
dz

=
d

dz

[
−
(z − eaT )(zn + f1)

(b/a)(eaT − 1)

]
= 0, (13)

yielding,

(n+ 1)zn − nzn−1eaT + f1 = 0. (14)

Expression (14) corresponds to the characteristic equation

of a fictitious system of the form,

Y (z)

V (z)
= G(z) =

1/(n+ 1)

zn−1(z − eaTn/(n+ 1))
(15)

in closed loop with the feedback,

V (z) = U(z)− f1Y (z). (16)

The open loop system (15) has n − 1 root at the origin

and one at

z =
n

n+ 1
ea

τ2

n .

If the breaking point over the real axis is located inside

the unit circle, the closed loop system (15)-(16) could have

a region of stability (once proved that the others n−2 poles

are inside the unitary circle), otherwise the system will be

unstable for any f1. This point can be found by considering,

df1
dz

=
d

dz

[
−
zn−1{z − eaTn/(n+ 1)}

1/(n+ 1)

]
= 0, (17)

that produces,

zn−2(z −
n− 1

n+ 1
eaT ) = 0,

which has n− 2 roots at the origin and one at,

z =
n− 1

n+ 1
ea

τ2

n .

As previously, the stability properties of the equivalent

continuous system (3) are obtained by considering the limit

as n → ∞, or equivalently, when T → 0. That is,

lim
n→∞

z = lim
n→∞

n− 1

n+ 1
ea

τ2

n = 1.

Again, since this limit point is located on the stability

boundary, in this case it is possible to see that if aτ2 ≤ 2
(i.e., the limit tends to one from the left) there exists a gain

f1 that places the breaking point (two poles) inside the unit

circle in the original discrete Root Locus diagram. Then,

if the remaining n − 1 roots are into the unit circle, the

closed loop system is stable. In the case that aτ2 > 2 it is

not possible to stabilize the system by static output injection

(i.e., the limit goes to one from the right). Let us now prove

that the remaining n− 1 roots are into the unitary circle if

and only if aτ2 < 2. Assume that aτ2 ≤ 2 and to take into

account the continuous case, the characteristic equation (10)

it is modified as,

lim
n→∞

p1(z) = lim
n→∞

[(z − ea
τ2

n )(zn + f1) + f2(b/a)(e
a

τ2

n − 1)]

= (z − 1) lim
n→∞

(zn + f1) = 0

from where it is stated that while one pole is on the

neighborhood of z = 1, the remaining poles are in a

neighborhood of the points (−f1)
1/n, inside the unit circle

producing a stable closed loop system if, as it was previ-

ously stated, it is satisfied, f1 < 1. From equation (17),

f1 = −
zn{z − eaTn/(n+ 1)}

1/(n+ 1)
,

then if z = 1,

f1 = −
{1− eaTn/(n+ 1)}

1/(n+ 1)
= −(n+ 1− neaT ).

Taking into account the continuous case as previously

done, it is obtained,

lim
n→∞

f1 = lim
n→∞

− (n+ 1− neaτ2/n) = aτ2 − 1. (18)

As f1 < 1 is a necessary condition for the stability, aτ2 −
1 < 1, then aτ2 < 2.

Proof of Corollary 1

From equation (18) in the proof of Lemma 1 we have:

lim
n→∞

f1 = aτ2 − 1.

Therefore if τ2 < 2

a , there exist f2 that stabilizes the closed

loop system (3), with aτ2−1 < f1 ≤ aτ2−1+ ǫ for ǫ > 0.

Now, from equation (13),

f2 = −
(z − eaT )(zn + f1)

(b/a)(eaT − 1)
,

then, if z = 1,

f2 =
f1 + 1

(b/a)
= (a/b)(f1 + 1).

Therefore, the gain f2 can be obtained by considering the

condition a
b (f1+1) < f2 ≤

a
b (f1+1)+ ǭ, for some ǭ > 0.
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