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Abstract— Blood glucose control through exogenous insulin
infusion is the main paradigm on Type 1 Diabetes Mellitus
Therapy. The artificial pancreas is a technological approach
that seeks an automatic insulin infusion by means of
continuous subcutaneous insulin infusion systems, continuous
glucose monitoring systems and a control algorithm that
compute the required insulin that must be infused. In this
sense, most of the blood glucose control schemes seeks blood
glucose control without taking care of the dynamic of infused
insulin (not the transient neither the stable state). In this
contribution a novel method for rapid stabilization of positive
and compartmental linear systems is presented. We proposed
a stabilization approach using a sliding mode control. Such
methodology is used to stabilizing the linear insulin system
of a well known glucose-insulin dynamical model.

Keywords: Sliding modes, positive systems, Type 1 Diabetes
Mellitus.

I. INTRODUCTION

Automatic insulin infusion is the main paradigm for

blood glucose control in Type 1 diabetes Mellitus (T1DM)

via the called artificial pancreas, a technological approach

to glycemic management in insulin-depend diabetic patients

(Cobelli, 2011). The automation of insulin delivering has

given rise to the understanding of glycemic management

as a control problem, and the main goal around is to

compute a time-varying insulin delivery profile able to

reach the glycemic control target. Many blood glucose

control algorithms have been developed since then, but

the effectiveness of all of them depends on the glucose

control via the insulin infusion; nevertheless, the dynamics

of delivered insulin is not considered as a relevant parameter

as the glucose concentration usually is. In this contribution,

the stabilization of delivered insulin is considered as a

control problem, inherent to the glucose one. In the glucose

metabolism of a healthy subject, the pancreatic insulin

release is perturbed by the glucose imbalance, but after

the perturbation, the insulin release goes to the homeostatic

equilibrium, or the so called, basal insulin release. This fact,

is a starting point towards the study of the glucose control

from a integrative point of view, where we must take care

of insulin control as well as the traditional glucose one.

The stabilizing of insulin dynamics is carried out by a

sliding mode control. Some contributions of sliding modes

control theory have been presented in applications of artifi-

cial pancreas (Kaveh, 2008)-(Abu, 2010); nevertheless such

contributions are devoted to the typical control problem, that

is the glucose control and stabilizing without taking care of

the insulin dynamics.

II. A CLASS OF POSITIVE SYSTEMS

Novel solutions on stabilizing positive linear system

via positive control can be obtained from the Frobenius-

Perron Theorem for Metzler matrices and known results of

sliding modes theory, particularly the sliding dynamic on

hyperplanes Lx − k = 0 of (n − 1)-dimension. Firstly, we

will discussed a preliminary issues.

Let σ(A) be the set of eigenvalues of A. C+ = {z ∈
C | Re(z) > 0} and C

− = {z ∈ C | Re(z) < 0}. A matrix

A = [aij ] ∈ Rn×n is Metzler if aij ≥ 0, for i 6= j. Also,

matrix A = [aij ] ∈ Rn×n is Hurwitz if σ(A) ⊂ C−.

Theorem 1: Frobenius-Perron for Metzler matrices

Let A ∈ Rn×n be a Metzler matrix. Then, there exists a

real number µ0 and a vector x0 ≥ 0, such that the follow

holds:

a) µ0 is an eigenvalue of A and x0 is its respective

eigenvector, i.e. Ax0 = µ0x0;

b) If µ 6= µ0 is any other eigenvalue of A, then Re(µ) <
µ0.

Remark 1: Inverse property of Metzler matrices.

Let A ∈ Rn×n be a Metzler matrix. There exist a matrix

−A−1 if and only if A is Hurwitz (i.e. µ0 < 0).

Corollary 1: Let A ∈ Rn×n be an irreducible Metzler

matrix. Then, there exist a strictly positive matrix −A−1 if

and only if A is Hurwitz.

Consider the next homogeneous linear system in

continuous-time:

ẋ = Ax (1)

where x ∈ Rn and A = [aij ] ∈ Rn×n. If x(t0) = x0 ∈ Rn,

t ≥ 0, then the solution x(t, t0, x0) ∈ Rn, for all t ≥ 0, if

and only if matrix A is Metzler.
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Theorem 2: Let us consider the positive linear system:

ẋ = Ax + c (2)

where x ∈ Rn, A is a Metzler matrix and c ∈ Rn is a

positive vector. Then, the non-trivial equilibrium state x =
−A−1c is asymptotically stable (i.e. A is Hurwitz) if and

only if there exists such equilibrium state and it is positive.

Definition 1: A matrix A = [aij ] is compartmental if the

follow two conditions hold:

1. A is a Metzler matrix.

2.
∑

i aij ≤ 0 for each i, j = 1, . . . , n.

The second condition is the called diagonal dominance

(by columns). From Gerschgorin Theorem (see (Leenheer

and Aeyels, 2001) and (Bellman, 1970)), if A is compart-

mental, then σ(A) ∩ C+ = ∅.

III. STABILIZATION OF

POSITIVE-SYSTEMS/POSITIVE-CONTROL VIA SLIDING

MODE

Let us consider the positive linear control system:

ẋ = Ax + bu (3)

of which state is x ∈ Rn
+, matrix A is Metzler and Hurwitz,

b ∈ Rn
+ and control parameter u ≥ 0; the system can be

restricted to an interval: u ∈ [r1, r2], with r2 > r1 ≥ 0.

If A in system (3) is Meztler and Hurwitz, the unique

positive equilibrium point x = −A−1bū (with constant

u > 0) is globally asymptotically stable. Then the follow

question rises: Is it possible to obtain a rapid stabilization

on x if we consider u ∈ [r1, r2] instead of u = u?.

To answer the last question we most consider that the

system (3) is not-controllable; according to Brammer’s

controllability Theorem. Due to A is a Meztler matrix, it

has at least a real eigenvalue, then the system is not fully

controllable via positive control. Now, a sliding method to

solve the rapid stabilization in positive linear systems via

positive control is presented.

Let us consider system (3) with aij ≥ 0 for i 6= j. In

state space, the positive equilibrium points are:

x1 = −A−1br1 and x2 = −A−1br2

such that ‖x1‖ < ‖x2‖, due to ‖x1‖ =
∥

∥−A−1br1

∥

∥ =
∥

∥−A−1b
∥

∥ r1 <
∥

∥−A−1b
∥

∥ r2 =
∥

∥−A−1br2

∥

∥ = ‖x2‖ .
The hypothesis of A Hurwitz implies that each equilibri-

um point xi is global attractor for solution of the feedback

system ẋ = Ax + bri, i = 1, 2. For sliding purposes, let us

consider a constant vector L ∈ Rn
+ and a constant scalar

k > 0, in such a manner that the embedded hyperplane in

Rn
+ given by:

Lx = k (4)

with numerical values L and k arbitrarily chosen such
that the sliding condition, given by the next inequalities,
is satisfied:

L (Ax + br1) < 0 for x ∈ R
n

+ such that Lx > 0

L (Ax + br2) > 0 for x ∈ R
n

+ such that Lx < 0
(5)

Determining magnitude k involves the straight line segment

joining the equilibrium points

x = λx1 + (1 − λ) x2, for λ ∈ (0, 1)

We can chose k in such a manner that hyperplane given

by Lx − k = 0 reaches a predetermined equilibrium point

x obtained with λ = 1
2 ;

x =
1

2
x1 +

1

2
x2

Then,

k = Lx (6)

Considering inequalities (5) and parameters r1, r2, x, k
and L, it is known that applying the no-continuous control

u =

{

r1 if Lx − k > 0
r2 if Lx − k < 0

, (7)

any solution x(t) with initial condition out of hyperplane

Lx = k reaches it in a finite time. It also known that

no-continuous control (7), evolving in the extremes of

restriction interval [r1, r2], minimizes the time to reach

hyperplane Lx = k, see (Leyva and Solis-Daun, 2009), due

to considering the Lyapunov function V = 1
2 (Lx − k)

2
,

control (7) is the solution of the follow optimization prob-

lem:

mı́n
u∈[r1,r2]

dV

dt
= mı́n

u∈[r1,r2]
{(Lx − k)L (Ax + bu)} .

Once inequalities (5) are satisfied an invariant dynamic

over hyperplane Lx = k rises, and this dynamics corre-

sponds to the application of the so called equivalent control,

given by ueq and defined for x such that Lx = k, and

computed from Lẋ = 0. That is,

L (Ax + bueq) = 0,

Consequently;

ueq = −
LAx

Lb
.

This results defines a globally stabilizing control:

u =







r1 if L (x − x) > 0
−LAx

Lb
if L (x − x) = 0

r2 if L (x − x) < 0
(8)

for all x ∈ Rn
+ in the feedback system (3)–(8).

Now, we must proceed to select the hyperplane Lx = k.

Let us consider the Metzler matrix A given in (3) with

inputs aij ≥ 0 for i 6= j. Such that term LAx is:

LAx = −x1p1 − x2p2 − x3p3 · · · − xnpn

= −〈p, x〉 < 0 for p ∈ intRn
+
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that means, p =
(

p1 p2 p3 · · · pn

)T
∈ R

n
+ gives

that equality:

l1a11 + l2a21 + l3a31 + l4a41 + · · · + lnan1 = −p1

l1a12 + l2a22 + l3a32 + l4a42 + · · · + lnan2 = −p2

l1a13 + l2a23 + l3a33 + l4a43 + · · · + lnan3 = −p3

...

l1a1n + l2a2n + l3a3n + l4a4n + · · · + lnann = −pn

written in a matricial form:

AT LT = −p

consequently, LT = (−A−1)T p ∈ Rn
+; due to A is Metzler

and Hurwitz. That is, for each p ∈ Rn
+ we have a vector

L = −pT A−1 ∈ Rn
+ such that ueq = −LAx

Lb
> 0. Then

ueq = −
LAx

Lb

=
pT x

pT (−A−1) b
> 0 for x ∈ R

n
+.

Matrix Aeq = A+b
(

pT

pT (−A−1)b

)

is Metzler because it is

the sum of a Metzler matric and a matrix with non-negativa

inputs. Let us consider the positive control system and the

plane S =
{

x ∈ Rn
+ L (x − x) = 0

}

.

Proposition 1: If p ∈ intRn
+ (that is: pi > 0 for i =

1, ..., n), if there exists a slide over S.

Proof: The condition p ∈ intRn
+ implies that ueq (x) > 0

for x ∈ Rn
+. According to Theorem 1 in (Sira, 1988), if

the control bounds r1 and r2 are selected such that r1 <
ueq < r2 remains, then the affine closed-loop system has

a sliding mode. In this manner, considering r2 > 0 large

enough (‖x‖ < ‖x2‖) there exist a slide over hyperplane

S.

Lema 1: detAeq = 0.
Proof: It is enough to prove that b ∈ ker

(

I − b L
Lb

)

, due to

(

I − b
L

Lb

)

b = b − b
L

Lb
b = 0,

We can conclude that detAeq = 0. �

The last Lemma can be interpreted as follows: the

n−dimensional dynamics of ẋ = Ax is restricted to the

(n − 1)-dimensional dynamics, by means of the equivalent

control ueq , defined at the hyperplane S and represented by

ẋ = Aeqx.

We have proved that λ = 0 is the eigenvalue of matrix

Aeq = A+b
(

pT

pT (−A−1)b

)

; moreover such matrix is Metzler

because it is defined as the sum of a Metzler matrix an a

matrix with no-negative inputs.

In the other hand, if x∗ ∈ Ker
(

I − b L
Lb

)

, then x∗ =
1

Lb
bLx∗. Thus, x∗ ∈ Im (b), implying that λ = 0 is a simple

eigenvalue with the corresponding eigenvector x∗. In the

application exposed in the follow, we show that λ = 0 is a

dominant eigenvalue of Aeq (according yo to the Frobenius-

Perron Theorem for Metzler matrices); this implies that the

dynamics of system ẋ = Aeqx has a state x = −A−1bū as

an unique equilibrium point .

Furthermore, from inequalities (5) it is easy to see that,

for x such that s (x) = 0 the follow is satisfied:

L (Ax + br1) < 0 < L (Ax + br2)

As Lb > 0, we have

Lbr1 < −LAx < Lbr2 ⇔ r1 <
−LAx

Lb
< r2

we can conclude that ueq ∈ [r1, r2]. In particular, the next

is also satisfied:

ueq (x) = −
1

Lb
LAx = −

1

Lb
LA

(

−A−1bu
)

= u.

IV. STABILIZATION OF INSULIN IMPLIES GLUCOSE

STABILIZATION

IV-A. Model of insulin dynamics

Many mathematical models about glucose-insulin dy-

namics in T1DM have been proposed; nevertheless the

Sorensen’s model is one of the most accepted because

its completeness in representing glucose metabolism in

a compartmental approach (Sorensen, 1985). The use of

Sorensen’s model for control purposes has been discussed

in (Quiroz, 2007); there, a brief discussion about the main

structure of the model is presented. The model is divided in

three subsystems: glucose, insulin and glucagon-metabolic

rates. Glucose subsystem is a 8-dimensional nonlinear of or-

dinary differential equations, meanwhile insulin subsystem

is a 7-dimensional linear one. Both systems are coupled

by the nonlinear glucagon-metabolic rates subsystem. It is

important to remark that the Sorensen’s model has been

validated and the involved parameters are known.

A typical approach of glucose control on T1DM consists

on design a function u(t) to control the measured output

signal, that is the glucose concentration of the peripheral

vascular tissue. The control objective on glucose concen-

tration is reached by the exogenous supply of insulin in

the subcutaneous route (control signal) defined by designed

u(t). In this contribution, a stabilization of the insulin

subsystem is proposed. This intent obeys to the necessary

control of insulin infusion; that is, it isn’t sufficient to

get glucose concentration on physiologic ranges, but of

infused insulin must be controlled in order to reduce excess

of infused doses to prevent hyperinsulinemia and diabetic

coma.

Here, we propose an algorithm for insulin control based

in rapid stabilization of a linear control system by means of

a sliding modes theory for positive systems. The controlled
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system is the insulin subsystem of the Sorensen’s model,

which is rewritten here and considering nominal parameters:

ẋ1 = 1,73x2 − 1,73x1

ẋ2 = 0,454x1 + 0,909x4 + 0,727x5 + 1,06x6−
3,151x2

ẋ3 = 0,765x2 − 0,765x3

ẋ4 = 0,094x2 + 0,378x3 − 0,789x4

ẋ5 = 1,411x2 − 1,835x5

ẋ6 = 1,418x2 − 1,874x6 + 0,455x7

ẋ7 = 0,05x6 − 0,111x7

where, xi, for i ∈ 1, ..., 7 is the insulin concentration

in brain, arterial, gut, liver, kidney, periphery vascular,

periphery interstitial compartments, respectively. This sub-

model is use to design a stabilizing controller according to

the methodology given in the previous section. Next, the

parameters of the no-continuos control u for rapid insulin

stabilization is computed.

IV-B. Rapid stabilization analysis

Let us consider the state space representation of the

insulin linear subsystem described before:

ẋ = Ax + bu
ẏ = g (x, y)

(9)

with x = (x1, ..., x7)
T ∈ R7

+ representing insulin levels.

The parameter of positive control u represents insulin

infusion, that is, a bounded parameter u ∈ [r1, r2], with

r2 > r1 ≥ 0. We can see that the matrix A of this model is

Metzler and Hurwitz, in such a manner that the positiveness

and sliding condition on Equation (5) hold.

The stabilization problem assumes exogenous insulin in-

fusion on the subcutaneous tissue, that is, the mass balance

equation of insulin concentration on the peripheral vascular

compartment ẋ6 is modified by the addition of the input u:

ẋ6 = 1,418x2 − 1,874x6 + 0,455x7 + 1,418u

The multiplicative term 1.418 preserves the mass balance

on equation, using nominal values of caudal and volumen

parameters on the peripheral vascular compartment (
QI

P

V I

PV

=

1,418) (Sorensen, 1985).

In this manner, b = [0 0 0 0 0 1,418 0]T

and the parameters of hyperplane Lx − k = 0 are

L = [a1 a2 a3 a4 a5 a6 a7]. Once inequalities

(5) hold, we can define a sliding control ueq in the segment

of hyperplane Lx = k. From Lẋ = 0

ueq = −
LAx

Lb
∈ [r1, r2] .

According to (6), we have: k = (r1 + r2)(0,45781a1 +
0,45781a2 + 0,45781a3 + 0,27387a4 + 0,35202a5 +
0,6885a6 + 0,31014a7). We can prove that there exists

L such that a stable sliding rises over hyperplane H =
{

x ∈ R7
+/Lx = k

}

. Values ai > 0 for i = 1, 2, ..., 7 and

k > 0 must be fixed such that the inequalities (5) hold. In

this manner:

LAx = x6(1,06a2 − 1,874a6 + 0,05a7) − x3(0,765 a3

−0,378a4) + x2(1,73a1 − 3,151a2 + 0,765 a3 +

0,094 a4 + 1,411a5 + 1,418a6) − x5(1,835a5 −

0,727 a2) − x4(0,789a4 − 0,909a2) − x1(1,73a1

−0,454a2) − x7(0,111a7 − 0,455a6)

For simplicity in the last expression numerical values are
assigned to some ai, in particular to eliminate x1, x3, x4,
x5 and x7 having the next linear system







1,73 −0,454 0 0 0
0 0 0,765 −0,378 0
0 −0,909 0 0,789 0
0 −0,727 0 0 1,835

















a1

a2

a3

a4

a5











=







0
0
0
0







with the following non-trivial solution:

[a1 a2 a3 a4 a5]
T = [0,66239 2,5241 1,4369

2,9080 1,0]T . Furthermore, we consider that

0,111 a7 − 0,455 a6 = 0 and a6 = 0,243 96a7, and

we have:

L =
[

0,662 2,524 1,436 2,908 1 0,243a7 a7

]

such that:

LAx = [0,345a7 − 4,023]x2 + [2,675 − 0,407a7]x6

Due to bT u =
[

0 0 0 0 0 1,418u 0
]T

we

have Lbr1 = a6r1 = 0,243a7r1. To determine the values

of positive parameter such that inequalities (5) hold, the

following operations must be considered:

Lẋ = (Ax + bu)

= (0,345a7 − 4,023)x2 + (2,675 − 0,407a7)x6 +

0,243a7u

We most also consider: Lx − k = 0,662x1 + 2,524x2 +
1,436x3 +2,908x4 +x5 +0,243a7x6 + a7x7 − k = 0. That

is;

x2 =
1

2,524
k −

1

2,524
(0,662x1 + 1,436x3 + 2,908x4 +

x5 + 0,243a7x6 + a7x7)

=
1

2,524 1
k − (0,262x9 + 0,569x3 + 1,152x4

+0,396x5 + 9,665 × 10−2a7x6

0,396a7x7)

=
1

2,524
k − Lmxm

In such a manner that:
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Lx − k > 0 ⇔ x2 >
1

2,524 1
k − Lmxm

⇔ u = r1

Lx − k < 0 ⇔ x2 <
1

2,524 1
k − Lmxm

⇔ u = r2

If we assume that 0,345a7−4,023 = 0, then a7 = 11,632;

such that:

L = [0,662 2,524 1,436 2,908 1 2,837 11,63] (10)

and Lẋ = 2,837u − 2,060x6, the inequalities (5) result:

ĺım
s→0+

Lẋ = ĺım
s→0+

L (Ax + br1) = 2,837r1 − 2,060x6 < 0

⇔ x6 >
2,837r1

2,060
= 1,377r1

ĺım
s→0−

Lẋ = ĺım
s→0−

L (Ax + br2) = 2,837r2 − 2,060x6 > 0

⇔ x6 <
2,837r2

2,060
= 1,377r2

which can be summarized in conditions for r1 and r2:

r1 < 0,726x6 < r2

if we agree with 13,770 = mı́n {x6} ≤ x6 ≤ máx {x6} =
34. 425, then we can chose r1 > 10 and r2 < 50. We can

also consider k = 552,75. The equivalent control results in

ueq = −LAx
Lb

= 0,726 22x6, due to Lẋ = 0 implies that

ueq = 0,726 22x6. Then, control can be redefined:

u =







r1 if Lx − 552,75 > 0
0,726 22x14 if Lx − 552,75 = 0

r2 if Lx − 552,75 < 0

with 0 < r1 < mı́n {0,726x6} ≤ 0,726x6 ≤
máx {0,726x6} < r2, where we chose k = 552,75. Now,

we compute the equilibrium point x the sliding system:

ẋ = Ax + bueq (x); that is:

Ax̄ + bueq (x) = 0

Due to x must be on the hyperplane, then Lx = k must

hold. From Equation (10) and selected k = 552,75, then

x = [28,672 28,672 28,672 17,153 22,059 43,114
19,421]T .

IV-C. Simulations

The no-continuous controller u proposed in the last sec-

tion seeks to stabilize the insulin subsystem of Sorensen’s

model in a desirable equilibrium point with physiological

meaning such that it can be able to regulate the glucose

subsystem through the coupling equations of the Sorensen’s

model (Quiroz, 2007). The numerical simulations of this

process were carried out using rMatLab-Simulink, con-

sidering L given in (10) and k = 552,75. First, the

dynamic evolution of glucose subsystem is observed just

0 50 100 150 200 250 300
10

20

30

40

50
Suncutaneous insulin infusion

Time (min)

u
 
(
m

U
I
)

 

 

u=22mUI

proposed u(t)

Figura 1. Control signal corresponding to the subcutaneous insulin.

considering a constant value u = 22 mUI emulating a

basal subcutaneous insulin infusion, as it is shown in circle-

marked line of Figure 1. Figure 2 shows the temporal evo-

lution of peripheral vascular glucose concentration (Gpv)

of Sorensen’s model, here we can see the effect of the

constant basal infusion on Gpv (circle-marked line). In the

same manner, the temporal evolution of peripheral vascular

insulin concentration is shown in circle-marked line of

Figure 3. This open-loop experiment is for realizing that

without parametric uncertainties nor external perturbations,

a continuous insulin infusion is enough to regulate a T1DM

patient on the physiological glucose range (70-120 mg/dl).

After that, the stabilizing controller u is proved for differ-

ent initial conditions. First the proposed u was proved with

initial conditions x0 = [22 22 22 22 22 22 22]T ,

which is the initial condition closer to hyperplane Lx−k =
0, the corresponding control signal of the no-continuous u is

shown in solid line in Figure 1, and the insulin stabilization

insulin subsystem is depicted by the trajectory of state x6

(Ipv) in solid line of Figure 3. The computed control signal

reaches insulin stabilization and it is able to hold Gpv in

the physiological range (see solid line in Figure 2).

Finally, a set con initial conditions x0 of the insulin

subsystem were selected in order observe the stabilizing

property of the insulin subsystem and the regulation of

the glucose subsystem. Figure 3 shows the time evolution

and stabilization of x6 considering ten different initial

conditions: five above the hyperplane (dash lines) and five

down (dotted lines). The corresponding glucose regulation

for each insulin profile with different initial condition are

shown in Figure 2, where dash lines correspond to initial

conditions above hyperplane and the dotted lines for the

initial conditions down hyperplane.

V. CONCLUSIONS

This contribution has the main intention to pointed out the

importance of insulin stabilization in the general problem

of automatic insulin infusion required in the paradigm of

artificial pancreas, the technological approach to improve
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Figura 2. Regulated peripheral vascular glucose concentration.
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Figura 3. Stabilization of insulin subsystem with different x0.

conventional T1DM therapy. The stabilization of the in-

sulin concentration in human body has relevant medical

advantages due to excess or deficiency of insulin in target

tissues has negative effects over their correct function and

in general it affects the complete glucose metabolism.

The proposed control scheme based in sliding modes

control theory allows that a positive compartmental linear

system, such as the insulin subsystem of Sorensen’s model,

can be stabilized on a desired equilibrium point, able

to regulate the blood glucose concentration on peripheral

tissue of a T1DM patient. Simulations results shows that

the stabilization is preserved for different initial conditions

of insulin state. This results shows that the sliding control

theory is an exploitable tool for this class of biomedical

systems.
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