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Abstract— This article presents a strategy to estimate
the glucose concentration at the input of a hydrogen
production reactor. The observer developed consists in
a Luenberger observer coupled to a Super-Twisting one.
The Luenberger observer uses the measured output of
the process to estimate the glucose and the biomass
concentrations inside the reactor. These estimations are
taken by the Super-Twisting observer to estimate the
glucose concentration at the reactor input. Results show
that the estimated glucose at the reactor input follows
correctly the real one and remains very close to it in
most of the period of time considered.
Keywords: Biohydrogen production, robust estimation,
Super-Twisting observer, Luenberger observer, control H2.

I. INTRODUCTION

Biological production of hydrogen (biohydrogen),
using (micro) organisms, is an area of technology
development that offers the potential production of
usable hydrogen from a variety of renewable resources.
Biological systems provide a wide range of approaches
to generate hydrogen, and include direct biophotolysis,
indirect biophotolysis, photo-fermentations, and dark-
fermentation [5].

Once a biological system to produce biohydrogen
has been developed, the operational conditions have
to be optimized in order to achieve a desirable perfor-
mance.

In this context, in [7] the authors proposed a real-
time optimization strategy to maximize the hydrogen
productivity inside a fermentation reactor. The process
productivity, depending on the organic loading rate
(OLR), was defined as objective function. The OLR
depends on both, the flow rate (Qin) and the substrate
concentration (Gluin) at the reactor input. Qin was
selected as the optimization variable while Gluin was
maintained constant along the process operation. Nev-
ertheless, Gluin is in reality a bounded perturbation
varying along the time which must be known in
order to correctly solve the optimization problem to
maximize the hydrogen productivity. Since measure
the glucose concentration at the reactor input in real-
time is not practical, it must be estimated.

The problem of estimating unknown inputs in
biotechnological processes has been addressed before
in several works. For instance, in [10] an extended
Luenberger observer has been proposed to estimate
both the state and the unmeasured input for anaerobic
wastewater treatment plants. In [8] the design of an
observer for unknown inputs both constant and peri-
odic (under the assumption of known frequency) is
presented. In particular, in [2] the problem of estimat-
ing simultaneously the states and the input concentra-
tions of an acidogenic process used for biohydrogen
production is addressed. The input and states concen-
trations were estimated using a state transformation
and an asymptotic observer. In this work, we propose
an alternative strategy for estimating the unmeasured
input of a biohydrogen production reactor by coupling
a Luenberger observer to a Super-Twisting observer.

The hydrogen production reactor has two inputs, the
substrate concentration Gluin (an uncontrolled input)
and the flow rate Qin (a controlled input). On the other
hand, the total gas flow rate (qGas) and the hydrogen
fraction (%H2) at the output reactor are measured.
Because the total gas at the reactor output is the sum
of the hydrogen plus the carbon dioxide gases, the
flow rates qH2,gas and qCO2,gas define the output of
the system.

As shown in figure 1, the coupled observer consists
in a Luenberger observer followed by a Super-Twisting
one. By measuring both, the hydrogen and the carbon
dioxide flow rates at the reactor output, the Luenberger
observer estimates the glucose and the biomass con-
centrations into the reactor. Then, the Super-Twisting
observer uses these estimations to estimate the glucose
concentration at the reactor input.

Fig. 1: Block diagram of the observation system.
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The article is organized as follows: section II
presents the model of the anaerobic hydrogen pro-
duction reactor used to develop the coupled observer.
In section III the Super-Twisting observer to estimate
the glucose at the reactor input is presented. Since
the Super-Twisting observer needs the glucose and the
biomass concentrations inside the reactor to be imple-
mented, in section IV a robust Luenberger observer is
developed to estimate them. In section V results are
presented and discussed. Finally, section VI is devoted
to conclusions and future perspectives.

II. MODEL OF THE HYDROGEN PRODUCTION
REACTOR

The anaerobic hydrogen production reactor consid-
ered in this work may be modeled, as proposed in [1],
by the following set of ordinary differential equations
(ODE):
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where Glu, Ace, Pro, Bu, X , CO2 and H2 represent
the concentrations in gL−1 of glucose, acetate, propi-
onate, butyrate, biomass, carbon dioxide and hydrogen,
respectively, in the liquid phase. The vector r describes
the kinetics of the involved biological reactions (in
gL−1d−1), D is the dilution rate (d−1) and qCO2,gas

and qH2,gas the gas flow rates of carbon dioxide
and hydrogen expressed in gL−1d−1. Finally, K ∈
R7×2 represents the matrix of pseudo-stoichiometric
coefficients.

The reaction pathway is described by two reactions
occurring in parallel. Thus, the vector r is composed
of the specific glucose uptake rate multiplied by the
biomass concentration in the reactor:

r =

[
µmax1Glu
KGlu1+Glu
µmax2Glu
KGlu2+Glu

]
X

Furthermore, the differential equations for the gas
phase with constant gas volume are:
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= −CO2,gasqgas
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V
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(2)
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(3)

with:
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RTamb
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V

(
ρH2
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)
(4)

ρH2
= kLaH2

(H2 −MH2
KH,H2

pH2,gas) (5)

pH2,gas =
H2,gasRTreac

MH2

(6)

ρCO2
= kLaCO2

(CO2 −KH,CO2
pCO2,gas) (7)

pCO2,gas = CO2,gasRTreac (8)

where CO2,gas and H2,gas are, respectively, the car-
bon dioxide concentration, in molL−1, and the hydro-
gen concentration, in gL−1, in the gas phase.

As shown in equation (4), the total gas flow at the
reactor output is the sum of the hydrogen gas flow
plus the carbon dioxide gas flow. The carbon dioxide
and the hydrogen gas flow rates are calculated by
considering the transfer of the gas out from the liquid
phase to the gas phase. The carbon dioxide and the
hydrogen concentrations at the liquid-gas interface in
equilibrium are calculated by considering the Henry
law. The pressure of each gas component can be
calculated using the ideal gas law for the two gases
(in bar).

In the following sections, the values of the constants
used in the reactor model are taken from [1].

III. ESTIMATION OF THE GLUCOSE AT THE
REACTOR INPUT

The glucose dynamics is modeled by:

˙Glu = k11r1 + k12r2 −D(Glu−Gluin)

˙Glu = DGluin + h(Glu,X)

where h(Glu,X) = k11r1 + k12r2 −DGlu. DGluin
is unknown but it is an absolutely continuous function
of time, its dynamics can therefore be modeled as:

d(DGluin)

dt
= δ2(t)

Thus, the dynamics of Glu and DGluin is modeled
by the following ODE system:

˙Glu = DGluin + h+ δ1(t); |δ1| ≤ c1, c1 > 0
˙(DGluin) = δ2(t); |δ2| ≤ c2, c2 > 0

(9)
Note that δ2(t) captures the uncertainties about

DGluin being any signal while δ1(t) captures the
uncertainties about r, Glu and X .

A Super-Twisting observer is then proposed to esti-
mate Gluin as:

˙̂
Glu = ˆ(DGluin) + h(Glu,X) + γ1φ1(ε1)

˙̂
(DGluin) = γ2φ2(ε1)

(10)
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min
Ω1,Ω2,ε,Θ

trace(Ψ)

under

Ω1 > 0

ε > 0

Θ > 0[
Ω1Λ− Ω2Ξ + ΛTΩ1 − ΞΩT2 + εI2 + (θ1g

2
1 + θ2g

2
2)ΞΞT Ω1Υ

ΥTΩ1 −Θ

]
≤ 0

(11)

where:

ε =

[
ε1
ε2

]
=

[
Glu− Ĝlu

DGluin − ˆ(DGluin)

]

φ1(ε1) = |ε1|1/2sign(ε1)

φ2(ε1) =
1

2
sign(ε1)

An observer gain Γ = [γ1 γ2]T with the objective to
decrease the influence of the uncertainties δ1 and δ2 on
the estimation error ε may be computed by minimizing
the sector condition as proposed in the optimization
problem (11) [4].

In (11) Ω1 ∈ R2×2, Ω2 ∈ R2×1, Θ ∈ R2×2, ε ∈ R,
g1|φ1(ε1)| = c1 and g2|φ2(ε1)| = c2. Θ and Ψ are
defined as:

Θ =

[
θ1 0
0 θ2

]
, Ψ =

[
−Θ 02

02 (θ1g
2
1 + θ2g

2
2)ΞΞT

]
Besides, the constant matrices are given as:

Λ =

[
0 1
0 0

]
, Υ =

[
1 0
0 1

]
, Ξ =

[
1 0

]
The observer gain, solution of the optimization

problem (11), is then calculated as Γ = Ω−1
1 Ω2 [4].

In order to implement the Super-Twisting observer
(10) the current concentrations of glucose and biomass
are needed. Therefore, in the following section a Lu-
enberger observer is developed to estimate the concen-
trations inside the biohydrogen production reactor by
measuring both, the hydrogen and the carbon dioxide
flows at the reactor output.

IV. ESTIMATION OF THE CONCENTRATIONS INSIDE
THE REACTOR

Let the state vector x ∈ R6 be defined as:

x =


Glu
X
CO2

H2

CO2,gas

H2,gas



Let us define in addition u = Qin as the controlled
input and w = Gluin as a disturbance.

A reduced nonlinear system can be defined as:

ẋ(t) = f(x, u, w) (12)

By linearizing the non-linear model (12) around an
operating point (x∗, u∗, w∗), a reduced linear state
space model is obtained as:

˙̄x(t) = Ax̄(t) +Buū(t) +Bww̄(t) (13)

where:
• A is the Jacobian matrix Jf (x)|(x∗,u∗,w∗).
• Bu is the Jacobian matrix Jf (u)|(x∗,u∗,w∗).
• Bw is the Jacobian matrix Jf (w)|(x∗,u∗,w∗).
• x̄(t) = x(t)− x∗.
• ū(t) = u(t)− u∗.
• w̄(t) = w(t)− w∗.

As mentioned in section I, the output of the system
is formed by both, the hydrogen and the carbon dioxide
gas flows at the reactor output. The measured output
is therefore defined as:

y(t) =

[
y1(t)
y2(t)

]
= Cx(t) (14)

y1 corresponds to the hydrogen flow rate and ac-
cording to equation (4) is defined as:

y1 =
RTamb

Patm − pvap,H2O
V

(
ρH2

MH2

)
(15)

y2 corresponds to the carbon dioxide flow rate and
according to equation (4) is defined as:

y2 =
RTamb

Patm − pvap,H2O
V ρCO2

(16)

By regarding equations (5)-(6) and (7)-(8) it is easy
to verify that matrix C takes the following form:

C =

[
0 0 0 cH2

0 cH2,gas

0 0 cCO2
0 cCO2,gas

0

]
with:

cH2
=

RTambV kLaH2

(Patm − pvap,H2O)MH2
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cH2,gas
=
R2TambV kLaH2KH,H2Treac

(Patm − pvap,H2O)MH2

cCO2 =
RTambV kLaCO2

Patm − pvap,H2O

cCO2,gas =
R2TambV kLaCO2

KH,CO2
Treac

Patm − pvap,H2O

The measured output is defined in terms of x̄ as:

ȳ(t) = y(t)− Cx∗ = Cx̄(t) (17)

The following Luenberger observer is proposed to
estimate x without knowledge of w:

˙̄̂x(t) = Aˆ̄x(t) +Buū(t) + L
(
ȳ(t)− ˆ̄y(t)

)
(18)

Let e = x̄ − ˆ̄x be the error between the real state
vector x̄ and the estimated state vector ˆ̄x. The transfer
function from w to e is therefore given by:

Gwe(s) = (sI − (A− LC))
−1
Bw (19)

An observer gain L with the objective to decrease
the influence of the disturbance w on the estimation
error e and accelerate its dynamics by placing its poles
within the stability region S(d, r, θ), shown in figure 2,
may be computed by minimizing the H2 norm of the
transfer function Gwe as proposed in the optimization
problem (22) [9], [3].

In (22) W1 ∈ R6×6, W2 ∈ R6×2 and W3 ∈ R6×6.
As shown in figure 2, d is the distance between the
origin and the vertical strip, r is the radius of the disk
centered at the origin and θ is the angle (in radians)
from the real axis to the strip defining the conic
sector. The observer gain, solution of the optimization
problem (22), is then calculated as L = W−1

1 W2 and
‖Gwe‖2 = trace(W3) [9], [3].

Fig. 2: Stability region S(d, r, θ)

By regarding equations (13) and (18) it is easy to
verify that the dynamics of the estimation error e are
given by:

ė(t) = (A− LC)e(t) +Bww(t) (20)

By solving the optimization problem (22) the eigen-
values of the dynamic matrix A − LC in (20) are
assigned in such a way that closed-loop stability is
warranted and e → 0 as t → ∞ in despite of
the disturbance w [9], [3]. Therefore, the glucose
concentration Glu and the biomass X into the reactor
asymptotically approach their true values.

On the other hand, by regarding equations (9) and
(10) it is easy to verify that the dynamics of the
estimation error ε is given by:

ε̇(t) = Λε(t) + Υ∆(t) + ΓT I2Φ(ε1) (21)

with:

∆(t) =

[
δ1(t)
δ2(t)

]
, Φ(ε1) =

[
φ1(ε1)
φ2(ε1)

]
If the optimization problem (11) has solution and

the true values of both the glucose and the biomass
into the reactor are available, all trajectories of system
(21) converge in finite time to the origin for all
perturbations satisfying |δi| ≤ gi|ε1|, for gi > 0 and
i = 1, 2 [4].

It must be point out that the dynamics of the Luen-
berger observer must be faster than the dynamics of
the Super-Twisting observer in order to have available
the true values of the glucose and the biomass into
the reactor to estimate the glucose at the reactor input
correctly.

V. RESULTS AND DISCUSSION

The complete observer to estimate the glucose
concentration at the reactor input is the Luenberger
observer (18) coupled to the Super-Twisting observer
(10). Optimization problems (11) and (22) were solved
using the SEDUMI solver over the YALMIP toolbox
in the MATLAB environment [6].

By considering |δ1| < 3.15, |δ2| < 2.575 and |ε1| <
2.5 the following vector Γ was computed:

Γ =

[
0.2551
2.9953

]
× 106

On the other hand, the dynamics of the Luenberger
observer were accelerated to converge to the real state
faster than the Super-Twisting observer ones, since the
last need the correct glucose and biomass concentra-
tions to estimate correctly the glucose at the reactor
input. Thus, by placing the poles of the Luenberger
observer inside the stability region S(0, 1500, π/3) the
following matrix L was computed:
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min
W1,W2,W3

trace(W3)

under

W1 > 0[
W1A−W2C +ATW1 − CTWT

2 + 2dW1 W1Bw
BTwW1 −I

]
< 0[

−rW1 W1A−W2C
ATW1 − CTWT

2 −rW1

]
< 0[

sin(θ)(W1A−W2C +ATW1 − CTWT
2 ) cos(θ)(W1A−W2C −ATW1 + CTWT

2 )
cos(θ)(ATW1 − CTWT

2 −W1A+W2C) sin(θ)(W1A−W2C +ATW1 − CTWT
2 )

]
< 0[

W1 I6
I6 W3

]
> 0

(22)

L =


13.8601 4.2975
0.2414 0.0760
0.0122 −0.0240
−0.0366 0.0066
−0.0219 0.0247

0.0467 −0.0526


The model of the hydrogen production reactor and

the observers were simulated during 25 days in MAT-
LAB considering a sample period T = 10min. In
addition, the ODEs were solved using the ode15s
solver. In order to demonstrate a proper convergence,
the observer starts after two days from the process
beginning. Figure 3 shows the glucose concentration
inside the reactor, in solid blue the ’real’ concentration
and in dashed black the estimated one. As can be
observed, the estimations remain very close to the
’real’ glucose concentration.
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Fig. 3: Estimation of the glucose concentration inside
the reactor. In blue solid line the ’real’ concentration
and in black dashed line the estimated one.

Figure 4 shows the biomass concentration inside the
reactor. Biomass converge to the ’real’ concentration
between days 4 and 5, it remains very close to the
’real’ concentration but between days 17 and 20 the
disturbance is not correct rejected. It may be caused

by the high variations in the glucose concentration at
the reactor input (figure 6).
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Fig. 4: Estimation of the biomass concentration inside
the reactor. In blue solid line the ’real’ concentration
and in black dashed line the estimated one.

Once the glucose and the biomass concentrations
into the reactor have been estimated using the Luen-
berger observer (18), we are able to implement the
Super-Twisting observer (10) to estimate the glucose
concentration at the reactor input. Nevertheless, the
Super-Twisting observer estimates the dynamics of
DGluin. Gluin is therefore estimated as:

Ĝluin =
( ˆDGluin)

D
=

( ˆDGluin)

Qin/V
=
V ( ˆDGluin)

Qin

Figure 5 shows the flow rate at the reactor input Qin
considered in this application.

Figure 6 shows the ’real’ glucose concentration at
the reactor input (in solid blue) and the estimated one
(in dashed black). As can be observed, the glucose
concentration remains close to the ’real’ one along
the simulation, however, after the day 17 even if the
estimated glucose follows the ’real’ one, the estimation
is not correct at all. This may be caused by the lack
of an exact estimation of both the glucose and the
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Fig. 5: Flow rate at the reactor input.

biomass inside the reactor, specially of the biomass
between days 17 and 20 as shown in figure 4.
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Fig. 6: Estimation of the glucose concentration at the
reactor input. In blue solid line the ’real’ concentration
and in black dashed line the estimated one.

Figure 7 shows the estimation error of the glucose
concentration at the reactor input. As can be regarded,
after the estimation has started (day 2), the estimation
error remains around zero but after the day 17 the error
estimation grows around 2g/L.

VI. CONCLUSIONS AND PERSPECTIVES

In this work, a coupled observer to estimate the
glucose concentration at the input of a hydrogen pro-
duction reactor was developed. As the results showed
in the previous section, the strategy proposed allows
estimating the glucose at the reactor input very close to
the ’real’ values. However, the estimation was not cor-
rect at all in the last eight days as consequence of not
exact estimations of both, glucose and biomass inside
the reactor. It suggests that the Luenberger observer
must be improved maybe by considering another norm,
as the H∞ one, to minimize the influence of the
disturbance on the error estimation.

After simulating this estimation strategy we are
ready to implement it at the laboratory in the real
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Fig. 7: Estimation error of the glucose concentration
at the reactor input.

hydrogen production reactor. First, the model will have
to be calibrated for the reactor. Once the observer is
validated with real data, the optimization problem to
maximize the hydrogen productivity will can be solved
with variable glucose concentrations at the reactor
input.
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