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Abstract— The self-triggered control paradigm allows to
considerably reduce the frequency of events, even in the case
of noise since it operates in open loop between two updates
(and hence does not detect a variation of the system dynamics).
However, the robustness is highly concerned due to this open-
loop setup. In this paper, we propose an original alternative
for the stabilization of a disturbed linear system in presence of
noise: i) a self-triggered control strategy computes and updates
the control signal using a copy of the undisturbed model and
ii) an event-based corrector updates this copy when it deviates
from the real measurement (that is when a disturbance occurs).
Such a technique operates in closed loop and can immediately
react in case of a perturbation. Therefore, combining together
a self-triggered control with such an even-based correction
yields a robust framework. The different proposals are tested
in simulation and compared in terms of updates, robustness
and frequency of events in presence of noise.

INTRODUCTION

The classical (time-triggered) discrete time framework

of controlled systems consists in sampling the system uni-

formly in time with a constant sampling period. Although

periodicity simplifies the design and analysis, it results in

a conservative usage of resources since the control law

is computed and updated at the same rate regardless of

whether is really required or not. In this context, some

works addressed more recently resource-aware implemen-

tations of the control law, where the control law is event-

driven (also called asynchronous).

Typical event-based detection mechanisms are functions

of the state variation (or the output) of the system, like

in (Årzén, 1999; Sandee et al., 2005; Durand y Marc-

hand, 2009; Sánchez et al., 2009). Although the event-

triggered control is well-motivated and allows to relax

the periodicity of computations, only few works report

theoretical results about the stability, convergence and per-

formance. In (Åström y Bernhardsson, 2002) in particular,

it is proved that such an approach reduces the number of

sampling instants for the same final performance. Some

stability and robustness proprieties are exploited in (Åström

y Bernhardsson, 2002; Heemels et al., 2009; Lunze y

Lehmann, 2010; Donkers y Heemels, 2010; Eqtami et

al., 2010). An alternative approach consists in taking events

related to the variation of a Lyapunov function – and

consequently to the state too – between the current state

and its value at the last sampling, like in (Velasco et

al., 2009), or in taking events related to the time derivative

of the Lyapunov function, like in (Tabuada, 2007; Anta y

Tabuada, 2008; Marchand et al., 2011; Téllez-Guzmán et

al., 2012). In the two latter references (nonlinear proposal

and its linear version respectively), the updates ensure

the strict decrease of the Lyapunov function and thus the

asymptotic stability of the closed-loop system.

On the other hand, a self-triggered implementation saves

much more computing since it eliminates the resource uti-

lization for continuously monitoring an event function. Such

an original setup, which was firstly proposed in (Velasco et

al., 2003), consists in computing the next sampling time

using the last state measurement (the last time an event

occurred). Therefore, one does not require any knowledge

of the current state anymore. Typical algorithms to calculate

the next activation time are based on the emulation of

the events generated by an event-based technique, like in

(Mazo Jr. et al., 2009; Mazo Jr. y Tabuada, 2009; Mazo Jr.

et al., 2010; Anta y Tabuada, 2010). In particular, the

present work is based on (Durand et al., 2012) which

is the (linear) self-triggered version of the event-based

strategies proposed in (Marchand et al., 2011; Téllez-

Guzmán et al., 2012), and so is asymptotically stable the

closed-loop system too. Such a scheme is also highly

considered for networked control system purposes, like in

(Mazo Jr. y Tabuada, 2008; Camacho et al., 2010; Arajo et

al., 2011; Tiberi et al., 2010; Tiberi et al., 2011), since a

constant monitoring means a continuously listening of the

communication network and, consequently, a strong energy

consumption.

Asynchronous paradigms allow to highly reduce the fre-

quency of events, however, both have some disadvantages.

On one hand, a self-triggered system operates in open

loop between updates of the control law and robustness

is therefore highly concerned. On the other hand, even if

the control is updated less frequently than with a periodic

scheme, the even-based scheme can behave as the classical

time-triggered strategy in presence of noise whether the

noised measurements always enforce events. This problem

is targeted here in particular since we propose a solution to

reduce the updates even in presence of noise. The idea is to

have benefit of both techniques, combining together the self-

triggered principle with the event-based scheme. The rest of

the paper is organized as follows. In section I, an overview

of the context is provided and the problem is stated. The
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system architecture is introduced in section II and the main

contribution is detailed. The stability and robustness is also

analyzed. Simulation results are provided in section III to

highlight the capabilities of the proposed approach. Some

discussions finally conclude the paper.

I. CONTEXT DESCRIPTION

Let consider the linear time-invariant dynamical system

ẋ(t) = Ax(t) +Bu(t) (1)

with x(0) := x0

with x ∈ R
n and u ∈ R

m the state and input vectors.

A. Event-based control

By event-based state-feedback we mean a set of two

functions:

i) an event function ξ : Rn × R
n → R, that indicates

if one needs (when ξ ≤ 0) or not (when ξ > 0) to

recompute the control law;

ii) a state-feedback function R
n → R

m such that

u(t) = −Kx(t) (2)

where K is the feedback matrix. The solution of (1) with

an event-based state-feedback starting in x0 at t = 0 is then

defined as the solution of the differential system

ẋ(t) = Ax(t)−BKx(ti) ∀t ∈ [ti, ti+1[ (3)

where the time instants ti, with i ∈ N (determined when

the event function ξ vanishes) are considered as events and

x(ti) is the memory of the state value at the last event. In

(Marchand et al., 2011; Téllez-Guzmán et al., 2012), it is

proved that the linear system (1) can be asymptotically sta-

bilized by means of a particular event-based state-feedback,

defined by

u(t) = −Kx(ti) ∀t ∈ [ti, ti+1[ (4)

with K := 2εBTP (5)

ξ
(

x(t), x(ti)
)

= (σ − 1)x(t)TQ1x(t)

−4εx(t)TQ2

[

σx(t)− x(ti)
]

(6)

with
Q1 := PA+ATP

Q2 := PBBTP

where σ ∈]0, 1[, ε > 0 are some tunable parameters, and P

is a positive definite matrix solution of the Riccati equation

Q1 − 4εQ2 = −Q (7)

where Q is also positive definite. The idea behind the

construction of the event function (6) is to compare the time

derivative of the Lyapunov function (7) i) in the event-based

case, that is applying x(ti) in the state-feedback control,

like in (4), and ii) in the classical case, that is applying

x(t) instead of x(ti) in the feedback, like in (2). The event

function is the weighted difference between both, where σ

is the weighted value. By construction, an event is enforced

when the event function vanishes to zero, that is when the

stability of the event-based scheme does not behave as the

one in the classical case. Also, ε changes how fast is the

control signal (this parameter was identify as an event-based

LQR parameter in (Téllez-Guzmán et al., 2012)).

It is also proved in (Marchand et al., 2011) that the

feedback (4)-(6) is uniformly MSI (Minimal inter-Sampling

Interval), that means it is a piecewise constant control with

non zero sampling intervals (avoiding Zeno phenomena).

B. Self-triggered control

Event-based control allows for computational savings. It

has notably been shown in (Åström y Bernhardsson, 2002)

that the control law can be updated less frequently than

with a periodic scheme while still ensuring the same per-

formance. However, a self-triggered implementation saves

much more computing since it eliminates the resource

utilization for continuously monitoring an event function.

This could be highly costly in some cases, especially

when events are based on Lyapunov function as this is the

case in (6). Typical self-triggered technique consists in the

emulation of the event-based strategy in order to calculate

the next sampling time. Therefore, one does not require any

knowledge of the current state anymore. By analogy with

the previous definition, by self-triggered state-feedback we

mean a set of two functions:

i) a sampling function λ : Rn → R that calculates the

next activation time (the next time the control law has

to be computed and updated);

ii) a state-feedback function R
n → R

m like in (2).

The solution of (1) with a self-triggered state-feedback

starting in x0 at t = 0 is defined as previously as the

solution of the differential system (3), but this is now

followed by the computation of the next instant time at

which the control law has to be updated, that is

ti+1 := λ
(

x(ti)
)

+ ti (8)

where ti+1 denotes the next sampling time. Such a method

was proposed in (Durand et al., 2012) for the (4)-(6)

feedback case (where the asymptotic stability and uniformly

MSI properties hence remain). The principle consists in ap-

proximating the system trajectory used in the event function

ξ. In (Velasco et al., 2008; Durand et al., 2012), the solution

of the closed-loop system (3) is defined as follows

x(t) = x(ti) + Ψ(t− ti)Lx(ti), ∀t ≥ ti (9)

with L := A−BK

where K is given in (5) and Ψ : Rn×n × R → R
n×n is

defined as a power series Ψ(t) =
∑

∞

k=1
Ak−1tk

k! , which can

be approximated to then simplify the problem. For instance,

an efficient (first-order) Taylor approximation of the next

sampling time ti+1 is the smallest positive zero of the event

function (6) such that

ξ
(

x(ti) + (ti+1 − ti)Lx(ti), x(ti)
)

= 0 (10)
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In the present case, this yields

ti+1 = argmin
t>ti

{

t = λ
(

x(ti)
)

+ ti

}

(11)

with λ(z) :=
−βz ±

√

β2
z − 4αzγz

2γz
(12)

and

αz := (σ − 1)zT
[

Q1 − 4εQ2

]

z

βz := (σ − 1)zTLT
[

Q1 − 4εQ2

]

z

+zT
[

(σ − 1)Q1 − 4σεQ2

]

Lz

γz := zTLT
[

(σ − 1)Q1 − 4σεQ2

]

Lz

where Q1, Q2 and L are defined in (6) and (9). One can

refer to (Durand et al., 2012) for further details on this

solution and a more general formula for other orders of

approximation.

C. How to reduce events even in case of noise ?

The problem which is targeted in this paper is that an

event-driven controlled system can behave as a continuous-

time one in presence of noise whether the noised measure-

ments always enforce events. For this reason, we propose

to add an event-based corrector mechanism. A similar

technique is suggested in (Lehmann y Lunze, 2011) for

a classical (time-triggered) state-feedback control strategy

for networked controlled systems under disturbances (in

order to stabilize a disturbed system over a communi-

cation link while reducing the sending of measurement

information). It is adapted here for the particular event-

based feedback (4)-(6) case as well as for the self-triggered

scheme (without network), both in presence of disturbance.

Moreover, whereas the original setup studies the impact of

communication delays, the present one is dedicated to the

noise problem.

The idea is to make a copy of the model of system (1)

without disturbance nor noise. This copy is then used

to compute the event function and the control law, and

corrected when it deviates too much from the real value

(that is notably when a disturbance occurs), and so is finally

reduced the number of events even in presence of noise

(since the control is based on a model without noise).

Contributions of the paper

In this paper, we propose a setup based on i) a self-

triggered state-feedback controller (for a low computational

cost) and ii) an event-based corrector (for robustness and

reduced noise). We prove that such a proposal makes the

control loop stable. We also show that the impact of the

noise in the frequency of events is reduced with both

asynchronous frameworks.

One could note that, whereas the event-based/self-

triggered control strategy is dedicated to some previous

works in (Marchand et al., 2011; Téllez-Guzmán et al.,

2012; Durand et al., 2012), the proposal can be easily

generalized to other strategies.

II. MAIN RESULTS

The system architecture is presented in Fig. 1. On one

hand, a self-triggered technique computes and updates the

control signal in order to minimize the computational cost.

On the other hand, an event-based corrector allows to

correct the dynamical model used by the controller. The

different events can occur at any time and independently,

consequently, one needs to mark the time variable t ∈ R
+

with respect to the source of events in order to formalize

such a framework next. Two indexes are used herein:

• ti denotes the time when an event is enforced for

control, afterwards called control’s event, with i ∈ N;

• tj denotes the correction’s event time, with j ∈ N.

Remember that both indexes are completely independent,

and so are the marked time variables (there is no chrono-

logical relation between ti and tj).

x(t)

u(ti)

xc(tj)

Self-triggered

controller

Event-based

corrector

Plant

Fig. 1. System architecture.

A. System with noise

The plant is described by a perturbed linear model

ẋ(t) = Ax(t) +Bu(t) + Ed(t) (13)

with x(0) := x0

where d ∈ R
n is the disturbance. Several conditions are

assumed in the sequel:

i) the dynamics of the plant as well as the initial condi-

tions are accurately known (A, B and x0 are known);

ii) the state x is measurable;

iii) the disturbance is bounded by

‖d(t)‖ ≤ dmax (14)

Then, considering the system (13) and applying the event-

based state-feedback (4)-(6), the continuous-time closed-

loop system becomes

˙̆x(t) = Ax̆(t)−BKx̆(ti) + Ed(t) ∀t ∈ [ti, ti+1[ (15)

with x̆(0) := x0

where x̆ ∈ R
n is the uncorrected closed-loop event-based

control state (whereas, in the present paper, a correction is

then applied), K is defined in (5).

B. Event-based corrector

The corrector runs a copy of the closed-loop system

model (15) without disturbance, that is

ẋc(t) = Axc(t) +Bu(ti) ∀t ∈ [ti, ti+1[ (16)

with xc(0) := x0
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where xc ∈ R
n is the state of the event-based corrector. This

model requires the control signal u(ti) which is applied to

the real system (13) each time an event is enforced from

the controller, it is directly obtained from the controller.

An event is generated for correction when the difference

between the (real) perturbed system state x(t) in (13) and

the state of the event generator xc(t) in (16) reaches a given

threshold ē, that is when

‖x(tj)− xc(t
−

j )‖ = ē (17)

where t−j is the time just before the event, and so is

corrected the value of the event generator state such that

xc(t
+
j ) = x(tj) (18)

where t+j is the time just after the event. This defines the

correction’s event instant tj .

C. Event-based controller

In fact, the event-based feedback (4)-(6) is not directly

computed for the system (13) to control, but for the copy

of the model available in the controller node, that is the

corrector model (16). The control’s event instant ti is hence

determined by the vanishing of the event function (6)

applied to xc, that is when

ξ
(

xc(t), xc(ti)
)

≤ 0 (19)

Also, the control law (4) becomes

u(t) = −Kxc(ti) ∀t ∈ [ti, ti+1[ (20)

where K is defined in (5). The control signal u(ti) is then

applied to both the plant and the corrector, and so it is

available in (16).

We insist here on the fact that the event detection

mechanism (19) is function of the state variation of the

corrector xc (and not the system x itself). As a result, the

control signal will be updated less often because of noise.

Indeed, no event will be enforced while the condition (17)

is not satisfied, that is while the error between the noised

and unnoised signals is lower than the threshold ē, and so

has to be tuned this parameter in consequence.

D. Self-triggered controller

As already explained, the principle of the self-triggered

technique consists in predicting the next time the control

law has to be updated and applying the new control signal at

this given time. The strategy used in this paper is a version

based on the event-based feedback (19)-(20). Both strategies

have the same performance and stability properties, this

was demonstrated in (Durand et al., 2012). The event-based

behavior presented above hence remains identical. However,

an update of the control signal is now followed by the

computation of the next time at which the control law has

to be updated. This next activation time is expressed in (11)

for the undisturbed case. It is simply applied to the corrector

model, that yields

ti+1 = argmin
t>ti

{

t = λ
(

xc(ti)
)

+ ti

}

(21)

where λ is defined in (12). Also, a difference exists between

both techniques concerning the robustness to some pertur-

bations since the self-triggered control operates in open loop

between events. This problem is solved here thanks to the

corrector. Thus, if a correction of the model (16), i.e. at

time tj , appears before the next (predicted) sampling time,

then the next activation time ti+1 has to be re-computed.

In this case, the predicted time becomes

ti+1 = argmin
t>tj

{

t = λ
(

xc(tj)
)

+ tj

}

(22)

Each time a sampling instant is computed, either from (21)

or (22), then the predicted time ti+1 as well as the value

of the control signal at this time, i.e. u(ti+1), are applied

to the controller. As previously, the impact of noise on the

frequency of updates is reduced. This self-triggered control

with event-based corrector proposal is hence a very low cost

strategy.

E. Stability analysis

Let first recall some definitions from (Khalil, 2002).

Definition 2.1: The solution x(t) of a continuous-time

system is Globally Uniformly Ultimately Bounded (GUUB)

if for every initial condition x(0) ∈ R
n there exists a

positive constant µ and time ν such that ‖x(t)‖ ≤ µ ∀t ≥ ν.

Definition 2.2: The solution of a disturbed system when

applying a continuous-time state-feedback (2), that is

ẋ(t) = Lx(t) + Ed(t)

where L is the closed-loop matrix defined in (9), is GUUB

if the feedback matrix K renders the undisturbed system (3)

stable and the disturbance d(t) is bounded.

The stability of the proposed event-based/self-triggered

state-feedback control strategies with event-based correction

then naturally follows.

Theorem 2.3 (Stability of the event-based framework):

Consider the event-based corrector (16)-(18). Consider

the event-based state-feedback (19)-(20). Then, the state-

feedback control loop for the disturbed linear system (13),

which disturbance is bounded by (14), is uniformly MSI

and GUUB.

Proof: We know that the uncorrected event-based

state-feedback (4)-(6) renders the undisturbed linear sys-

tem (3) asymptotically stable for a given feedback ma-

trix K defined in (5). This was proved in (Marchand et

al., 2011; Téllez-Guzmán et al., 2012). From Definition 2.2,

one can hence say that the uncorrected continuous-time

state-feedback system (15) is GUUB for a bounded dis-

turbance (14) and the stabilizing feedback (4)-(6).

On the other hand, let

e(t) := x(t)− x̆(t) (23)
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be the difference between i) the state x(t) of the closed-

loop system of the present study case, i.e. (13)-(14), (16)-

(18), (19)-(20) and ii) the state x̆(t) of the uncorrected

closed-loop system (15). The derivative of e(t) gives

ė(t) = ẋ(t)− ˙̆x(t)

= Ax(t)−BKxc(ti) + Ed(t)

−Ax̆(t) +BKx̆(ti)− Ed(t)

= Ae(t)−BKe(ti) +BKx∆(ti) (24)

with e(0) = 0

and x∆(t) := x(t)− xc(t) (25)

This yields the upper bound of the error e as follows

‖e(t)‖ ≤

∫

∞

0

‖eAsBK‖ds dmax (26)

where dmax is the disturbance bound defined in (14), since

the feedback matrix K defined in (5) renders the “undis-

turbed” approximation error dynamics (24) asymptotically

stable (where x∆ can be seen as the disturbance), and

so becomes null the first right-hand term in (24). Since

the uncorrected continuous-time state-feedback system (15)

is GUUB and ‖e(t)‖ in (26) is upper-bounded, one can

conclude the proposed event-based state-feedback control

with event-based correction is GUUB.

Also, the MSI property was demonstrated in (Marchand

et al., 2011) for the control case. Let calculate the minimal

sampling time for the corrector case. From (13), (16), (20),

the dynamics of the difference between the real (disturbed)

system and the undisturbed one, previously denoted x∆

in (25), is

ẋ∆(t) = Ax∆(t) + Ed(t)

which solution on the time interval t ∈ [tj , tj+1[ is

x∆(t) = eA(t−tj)x∆(tj) +

∫ t

tj

eA(t−s)Ed(s)ds

Then, as no correction’s event should be enforced according

to (17), the inequality ‖x∆(t)‖ < ē has to hold for all

t ∈ [tj , tj+1[. This yields
∥

∥

∥

∥

∥

∫ t

tj

eA(t−s)Ed(s)ds

∥

∥

∥

∥

∥

< ē

Then, an upper bound of the inter-sampling interval for

which this inequality is satisfied is easily determined by

tj+1 − tj ≥ τ̄j

with τ̄j = argmin
τ>0

{
∫ τ

0

∥

∥eAsE
∥

∥ ds dmax = ē

}

(27)

This ends the proof.

Theorem 2.4 (Self-triggered framework’s stability):

Consider the event-based corrector (16)-(18). Consider the

self-triggered feedback (20)-(22). Then, the state-feedback

control loop for the disturbed system (13), which distur-

bance is bounded by (14), is uniformly MSI and GUUB.

Proof: We previously proved that the event-based

state-feedback control with event-based correction and com-

munication delays is GUUB. Also, we know that the

control signal (20) is applied to the plant at the predicted

activation time (21)-(22) in the self-triggered case. As a

result, one can say the self-triggered controller operates like

the event-based controller. Consequently, the proposed self-

triggered state-feedback control with event-based correction

is GUUB. The MSI property is trivial from the previous

proof.

III. SIMULATION RESULTS

In this section, we test the proposal in simulation, using

the Matlab/Simulink environment. The system is a simple

double integrator, which matrices in (13) are given by

A =

[

0 1
0 0

]

, B =

[

0
1

]

, E =

[

1
0

]

, x0 =

[

1
−3

]

The control parameters to calculate K in (5) are

Q =

[

10 0
0 10

]

, ε = 1 and σ = 0.8

and the corrector parameter is ē = 0.1. Also, we consider

a (randomly) varying disturbance which maximum value is

dmax = 0.1.

Some simulation results of the system without correction

and without noise can be found in (Durand et al., 2012).

To summarize, whereas the control signal is continuously

updated in the classical setup, only few updates allow to

stabilize the system in both event-based and self-triggered

versions. The convergence rate is different but this can be

tuned with the σ parameter in the event function (but this

is not the aim of the current paper) and the difference

between both asynchronous responses is due to the first-

order approximation in the system trajectory (this can also

be tuned applying a higher order of approximation in the

system trajectory, but one has then to expect a higher

computational cost of the sampling function in the self-

triggered scheme in return).

Finally, we study the behavior of the asynchronous pro-

posals with the event-based corrector in presence of noise.

The system responses are depicted in Fig. 2. In particular,

a reduction of about 75% of updates is achieved in the

event-based case when applying the event-based corrector

(19 events which 6 for the correction mechanism, against

66 without correction). On the other hand, the self-triggered

setup does not reduce the number of events in presence

of noise (because this open-loop strategy does not detect

anything between two events) but, at least, it now operates

in closed loop thanks to the added event-based corrector

(which is quite important for a disturbed system like in the

present case). Moreover, the computational cost of the self-

triggered technique is lower than the event-based one (by

construction).
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(c) Self-triggered without correction.
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Fig. 2. Simulation results of the double integrator: event-based and self-
triggered state-feedback control in presence of noise, with and without
event-based correction.

CONCLUSION AND FUTURE WORK

In this paper, we proposed to combine together i)

an event-based/self-triggered control technique and ii) an

event-based corrector for the stabilization of a disturbed

linear system. We proved this framework is stable. Some

simulation results were provided. They notably highlighted

the low cost and robust properties of the proposals. They

also show that the impact of noise in the frequency of

updates is highly reduced (notably in the event-based case).

Future work is to consider a Networked Control System,

where communication delays have to be taken into account,

and so is really interesting an asynchronous control to

reduce the communications.

REFERENCES

Anta, A. y P. Tabuada (2008). Self-triggered stabilization of homogeneous
control systems. En: Proceedings of the IEEE American Control

Conference.

Anta, A. y P. Tabuada (2010). To sample or not to sample: Self-triggered
control for nonlinear systems. IEEE Transactions on Automatic

Control 55, 2030–2042.

Arajo, J., A. Anta, M. Mazo Jr., J. Faria, A. Hernandez, P. Tabuada y
K. H. Johansson (2011). Self-triggered control over wireless sensor
and actuator networks. En: Proceedings of the IEEE International

Conference on Distributed Computing in Sensor Systems.
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