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Abstract— Our main objective in this work is to study how
to render an affine control system globally asymptotically
stable (GAS), when the control value set (CVS) is given by
an m-hyperbox B

m
r

(∞) := [−r−1 , r+

1 ] × · · · × [−r−m, r+
m] with

0 ∈ B
m
r

(∞). Hence we allow the null-control input in its
boundary, 0 ∈ ∂Bm

r
(∞), i.e. positive/signed control input

components. Working along the line of Artstein and Sontag’s
control Lyapunov function (CLF) approach, we study the
conditions that feedback controls of the decentralized form
u(x) = (ρ1(x) ω1(x), . . . , ρm(x) ωm(x))⊤, should satisfy in
order to be admissible (regular and valued in B

m
r

(∞)) and
render a system GAS, given a known CLF. Here, ω(x) is an
optimal control w.r.t. a CLF and ρj(x) are rescaling functions.

Keywords: constrained control, nonlinear control system,
global stabilization, control Lyapunov function.

I. INTRODUCTION

Consider the multiple input continuous-time affine system

·
x = f(x) +

m
∑

j=1

ujgj(x), (1)

where x ∈ R
n, f, gj : R

n → R
n, for j = 1, . . . ,m,

are regular vector fields. Here, the word regular means

continuous, of class Cs(Rn) (s ≥ 1), smooth, etc. We shall

assume that f(0) = 0. A control value set (CVS) is any

convex set U ⊆ R
m, u = (u1, . . . , um)⊤ ∈ U , and ⊤

denotes transposition. By an admissible feedback control we

will understand any regular function u : R
n → U .

We say that a control input component uj is signed if and

only if (iff ) uj can take both signs; whereas it is positive iff

uj ≥ 0. A control input u is called positive iff all uj ≥ 0.

The main aim of this paper is to study how to render

an affine control system (1) globally asymptotically stable

(GAS) via an admissible feedback control u(x), when the

CVS is given by an m-hyperbox Bm
r

(∞) := [−r−1 , r+
1 ] ×

· · · × [−r−m, r+
m], with r−j ≥ 0 & r+

j > 0, so that 0 ∈
Bm

r
(∞). Note that renaming gj(x) ← −gj(x) & uj ← −uj

in (1), any component uj ≤ 0 is converted into positive, so

r+
j 6= 0. Therefore, in view that (1) is affine in the control

input, the case of negative components is already included.

Hence, we will allow that either 0 ∈ intBm
r

(∞) (i.e. all

r−j > 0) or the possibility that the null-control input be in

its boundary, 0 ∈ ∂Bm
r

(∞) (i.e. some r−j = 0), so we can

have control inputs with an assortment of signed or positive

components ranging between all signed to all positive.

In control theory, a control Lyapunov function (CLF)

V (x) is used to prove that a control system is feedback sta-

bilizable. This concept was introduced in (Artstein, 1983),

opening the possibility of using it to solve stabilization

problems: The CLF stabilization approach. We say that

V : R
n → R is a CLF [for system (1) with controls taking

values in U ] iff it is a Cκ(Rn) (κ ≥ 1) function which is

positive definite (V (0) = 0 and V (x) > 0 iff x 6= 0) and

proper (V −1(c) is compact, for any c ≥ 0), such that

∀x 6= 0 ∃u ∈ U
·

V (x) < 0. (2)

It is known that a system of ordinary differential equa-

tions is GAS iff there is a global strict Lyapunov function.

An analogous result for affine systems is given by the so-

called Artstein’s theorem in (Artstein, 1983): Assume that

(1) is regular and U ⊆ R
m is a CVS. There exists a smooth

CLF V (x) iff there exists a continuous (except possibly at

0) control u(x), taking values in U , that renders (1) GAS.

Now, let us restate (2) into the equivalent representation1

∀x 6= 0 inf
u∈U

·

V (x) = inf
u∈U

{a(x) − b(x) · u} < 0, (3)

where ξ1 · ξ2 denotes the inner product of ξ1 and ξ2, and

a(x) := LfV (x) & b(x) := (b1(x), . . . , bm(x)),
with bj(x) := −Lgj

V (x), for j = 1, 2, . . . ,m
(4)

denote the Lie derivatives of V (x) with respect to (w.r.t.)

the vector fields that define the system (1). The feedback

controls can also be made continuous at x = 0 under

the additional assumption of the small control property

(SCP) introduced in (Artstein, 1983). However, although

Artstein’s result made a great impact on stabilization theory,

it cannot be used as a control design tool, since its proof is

nonconstructive. Another obstacle consists on finding CLF’s

(fortunately, there are methods to construct CLF’s for special

classes of systems, cf. (Malisoff & Mazenc, 2009)). Never-

theless, there has been a great activity in designing feedback

controls via CLF’s due to an explicit formula when U = R
m,

1W.l.g. we have made a slight modification on (3)-(4) changing the sign.
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obtained in (Sontag, 1989): the universal formula. Motivated

by Artstein and Sontag’s results, increasing efforts have

been made to design control formulæ w.r.t. more general

CVS (see (Leyva et al., 2013; Solı́s–Daun, 2013a) and the

references therein). The following important open problem

was stated in (Sontag, 1998): “Find universal formulas for

CLF stabilization, for general (convex) control-value sets

U”, i.e. solve the synthesis problem for almost smooth (of

class C∞(Rn\{0}) and continuous on R
n) or almost real

analytic feedback controls valued in general (convex) CVS.

The latter problem has been addressed by Sontag and co-

workers for specific compact CVS: First, it was proposed

an explicit universal formula for feedback controls taking

values in the Euclidean open unit ball; and then in (Malisoff

& Sontag, 2000), that result was extended to p-normed open

unit balls, intBm
1 (p) := {u ∈ R

m : ‖u‖p < 1}, where

‖u‖p := p
√

|u1|
p

+ . . . + |um|p, with p = 2k/(2k − 1) for

k = 1, 2, . . . (so, 1 < p ≤ 2). Moreover, they proved that

their designed universal formula is almost smooth for these

specific values of p, whenever a(x) and b(x) are smooth.

In (Suárez et al., 2002), it was defined a family of

global stabilizers uε(x) taking values in the (asymmetric)

CVS Bm
r

(p) := {u ∈ R
m : ψp,r(u) ≤ 1}, where ψp,r(u) :=

p
√

|u1/r1(u1)|
p

+ . . . + |um/rm(um)|p, for 1 < p < ∞,

and each rj(uj) is a function defined by

rj(ζ) :=

{

r+
j , if ζ ≥ 0,

r−j , if ζ < 0,
(5)

with r±j > 0, for j = 1, . . . ,m. The designed controls uε(x)
are continuous for any p > 1. Furthermore, continuous

feedback controls were also derived for the r-weighted

m-hyperbox Bm
r

(∞) := [−r−1 , r+
1 ] × · · · × [−r−m, r+

m],
with r±j > 0. Then, in (Suárez et al., 2001) this control

design was generalized proposing an explicit formula for a

one-parameterized family of continuous controls uε(x) that

render a system GAS w.r.t. more general CVS. Recently, in

(Solı́s–Daun, 2013a; Solı́s–Daun, 2013b), it was proposed

a general form of admissible feedback controls (u(x) =
ρ(x)ω(x), where ρ(x) is a rescaling function and ω(x) is

an optimal control w.r.t. a CLF), that comprehends many of

the control formulæ found in the literature. Moreover, it was

shown how the regularity of ω(x) depends on the geometry

of U . Explicit control formulæ for feedbacks w.r.t. general

compact CVS U with 0 ∈ intU were designed (practically

smooth if a(x) and b(x) are smooth) that render (1) GAS,

but at the expense of small overflows in the control values.

Considering polytopic CVS, we have: In (Curtis, 2003), it

was introduced a method for algorithmically parameterizing

stabilizing controls subject to polytopic CVS, given a known

CLF. Then, in (Solı́s–Daun & Leyva, 2011), it was studied

how to obtain admissible feedback controls that renders a

system (1) GAS w.r.t. polytopic CVS U with 0 ∈ intU .

In all the aforementioned papers, the control input com-

ponents are all signed. Hence, in the case of positive control

inputs, we have: In (Lin & Sontag, 1995), it was addressed

the scalar control design problem w.r.t. CVS (0, 1) or (0,∞),

but their control formulæ are not necessarily continuous at

x = 0. In (Leyva et al., 2009), it was proposed a formula

for continuous feedbacks taking values in [−r−, r+], also

addressing the case of positive controls. Finally, in (Leyva

et al., 2013), it was proposed an explicit formula for regular

feedback controls taking values in Bm
r

(∞) = [−r−1 , r+
1 ] ×

· · · × [−r−m, r+
m], to render systems GAS. Moreover, it was

studied the problem of positive feedback controls taking

values in Bm
r

(∞) (i.e. all r−j = 0). The feedback controls

proposed in (Solı́s–Daun & Leyva, 2011; Leyva et al., 2013)

share the control scheme u(x) = (u1, . . . , um)⊤, with

uj(x) = ρj(x)ωj(x), where ω(x) is an optimal control

w.r.t. a CLF and ρj(x) are rescaling functions, j = 1, . . . ,m.

In this paper, we generalize the results achieved in (Leyva

et al., 2009; Leyva et al., 2013). In general, the feedback

controls are continuous, in accordance with Artstein’s the-

orem, and take values in Bm
r

(∞) with 0 ∈ Bm
r

(∞), i.e. we

allow control inputs with signed /positive components.

The paper is organized as follows. In §II, we obtain

some convexity results for polytopes and hyperboxes that

are needed in this work. In §III, we study properties of the

optimal control ω(x); and then, ω(x) is analyzed for an

r-weighted m-hyperbox Bm
r

(∞), finding that it is a bang-

bang type control. Hence, inasmuch as ω(x) is discontinu-

ous with values on ∂Bm
r

(∞), in §IV we propose feedback

controls of the decentralized form u(x) = (u1, . . . , um)⊤,

with uj(x) = ρj(x)ωj(x), and ρ(x) a rescaling function.

We search conditions that controls u(x) should satisfy in

order to be admissible (using functions ρj(x) to regularize

each control component ωj(x) at its singular switching

hypersurface Nj , for j = 1, . . . ,m), and render (1) GAS.

II. ELEMENTS OF CONVEX THEORY

For the readers convenience and to keep the paper self-

contained, we introduce some results from Convex Theory.

A. Polarity

A Minkowski functional (also known as (a.k.a.) gauge)

µ : D ⊆ R
m → R is a positively homogeneous (µ(λu) =

λµ(u), for λ ≥ 0) convex function. Hence, for some convex

set ∅ 6= U ⊂ R
m, a gauge can be defined as

µ(u) := inf {r ≥ 0 : u ∈ rU} , (6)

and vice versa if µ(u) is closed (i.e. lower semi-continuous

and its restriction µ ↾domµ6=∅ is finite), then there exists a

unique convex (level) set ∅ 6= U = {u ∈ R
m : µ(u) ≤ 1}.

Theorem 1: ((Rockafellar, 1972), pp. 79 & 125). Let

U ⊂ R
m be a closed convex set with 0 ∈ U . Then: (i) µ is

closed and positive semi-definite; (ii) µ is positive definite

iff U is bounded; and (iii) µ is finite iff 0 ∈ intU .

If U is a compact convex set with 0 ∈ intU , the polar

of µ and the polar of U are defined, respectively, by

µ∗(u∗) := sup
u 6=0

u∗ · u

µ(u)
&U∗ := {u∗ ∈ (Rm)∗ : µ∗(u∗) ≤ 1}

(7)

where (Rm)∗ is the dual space of R
m.
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The support function of U is the sublinear (positively

homogeneous and subadditive) function defined by

ςU (u∗) := sup
u∈U

u∗ · u, (8)

and dom ςU is a cone in (Rm)∗ with apex at 0.

Theorem 2: ((Rockafellar, 1972), p. 125). Assume that

∅ 6= U ⊆ R
m is a closed convex set with 0 ∈ U . Then:

(i) U∗ is a closed convex set with 0 ∈ U∗, and U∗∗ = U ;

(ii) if µ and µ∗ are respectively the gauges of U and U∗,

then µ∗ = ςU , and vice versa; and (iii) U is bounded iff

U∗ satisfies that 0 ∈ intU∗, and vice versa.

Observe that it is very important that 0 ∈ intU . Other-

wise, if 0 /∈ intU then some properties are lost.

Corollary 1: If U is a compact convex set with 0 ∈ ∂U ,

then: (i) U∗ is an unbounded closed convex set with 0 ∈
intU∗; (ii) µ is positive definite and closed, but it is not

finite everywhere; and (iii) ςU is lower semi-continuous and

finite everywhere, but it is only positive semi-definite.

B. Some convexity results for polytopes

The set of all convex combinations of points in A is the

convex hull of A, denoted by conv{A}. Analogously, we

define the affine hull of A, aff(A). A set A is d-dimensional,

a d-set for short, if d = dimaff(A). The relative interior of

A, relintA, is the interior of A relative to aff(A).
Each hyperplane H = {p ∈ R

m : v ·p = c} separates the

space R
m into two halfspaces H+ = {p ∈ R

m : v · p ≥ c}
and H− = {p ∈ R

m : v · p ≤ c}. We say that H is a

supporting hyperplane to a closed convex set A ⊆ R
m if

there is a0 ∈ A lying in H , and A ⊂ H+ or A ⊂ H−. The

supporting halfspace of A is the halfspace containing A.

A compact convex set P that is the convex hull of a

finite point set {v1, . . . , vr} ⊂ R
m, P = conv{v1, . . . , vr},

is a polytope. H ∩ A is an exposed face of A, if H is

a supporting hyperplane to A. Faces of dimensions 0, 1,

. . . , d, . . . ,m − 1 are called vertex, edge, d-face and facet.

A convex set U ⊆ R
m is said to be a polyhedron iff it

is the intersection of finitely many closed half-spaces. The

following result states an equivalent description of P .

Theorem 3: P is the convex hull of a finite point set (a

V-polytope) iff P is a bounded polyhedron (an H-polytope).

Theorem 4: If U is a polytope, then U∗ is a polyhedron.

Theorem 5: U is a polytope with 0 ∈ intU iff U∗ is also

a polytope with 0 ∈ intU∗. Moreover, polarity provides a

bijection between the faces of U and the faces of U∗ that

reverses the relation of inclusion.

Hereafter, we will identify the dual space (Rm)∗ with

R
m using the inner product, and denote covector u∗ by b.

Assume that U is polytope with 0 ∈ U . It is well

known that U is a polytope iff its support function is

continuous and piecewise linear. The domains of linearity

correspond to the vertices of the polytope U (for the

maximum of the scalar product that defines the support

function is achieved at one of the vertices). Hence, as-

suming the V-representation, if U has k vertices, then

U = conv{v1, v2, . . . , vk} and

ςU (b) =











v1 · b, if b ∈ C1

...
...

vk · b, if b ∈ Ck

(9)

where Ci are polyhedral cones with apex at 0, i = 1, . . . , k,

corresponding to the domains of linearity of ςU . These cones

tile R
m, and this tiling is called the fan of the polytope U .

To every proper face F of a closed convex set A 6= ∅

corresponds a cone NF of linear functions v ∈ (Rm)∗

which are maximized in F on A. The cone NF is called

the normal cone of F and the normal cones of all faces of a

polytope P form a complete fan, the normal fan, NP , of P :

Every face F 6= ∅ of a normal cone is also a normal cone

of some face of P , the intersection of two normal cones is

a face of both and the union of all cones covers R
m.

For ςU (b) defined in (9), the polar set U∗ is given by

U∗ = {b ∈ R
m : ςU (b) ≤ 1}

= {b ∈ R
m : v1 · b ≤ 1& . . . & vk · b ≤ 1},

(10)

which is defined by a system of k linear inequalities.

For a closed convex set U , the null-set of ςU is

Nς := {b ∈ R
m : ςU (b) = 0}. (11)

From Theorem 1, if U is compact with 0 ∈ intU , then

ςU (b) is finite everywhere and positive definite (Nς = {0}).

However, if U is a polytope with 0 ∈ ∂U , then Theorem 4

& Corollary 1, imply that U∗ is an unbounded polyhedron

with 0 ∈ intU∗, and ςU (b) is only positive semi-definite.

Therefore, it is important to study the properties and the

geometric structure of Nς . Clearly, we have that {0} ⊆ Nς ,

with equality iff 0 ∈ intU (from Theorems 1 (ii) and 2).

An important class of polytopes are the r-weighted m-

hyperboxes (a.k.a. orthotopes),

Bm
r

(∞) := [−r−1 , r+
1 ] × . . . × [−r−m, r+

m]
= conv

{

(−r−1 , . . . ,−r−m), . . . , (r+
1 , . . . , r+

m)
}

,
(12)

with r−j ≥ 0, r+
j > 0, for j = 1, . . . ,m.

First of all, in view that Bm
r

(∞) is a compact con-

vex set with 0 ∈ Bm
r

(∞), then it admits a represen-

tation in terms of a Minkowski functional, Bm
r

(∞) =
{u ∈ R

m : ψ∞,r(u) ≤ 1}, where ψ∞,r : R
m → R is

ψ∞,r(u) := supj

{

r−1
j (uj) |uj |

}

=
∥

∥(r−1
1 (u1) |u1| , . . . , r

−1
m (um) |um|)

∥

∥

∞
,

(13)

with rj(ζj) defined in (5), and r−j ≥ 0, r+
j > 0, for j =

1, . . . ,m. Corresponding to ψ∞,r, we define the following

r-weighted l1-type Minkowski functional

ψ1,1/r
(b) :=

∑m
j=1 rj(bj) |bj |

= ‖(r1(b1) |b1| , . . . , rm(bm) |bm|)‖1 ,
(14)

rj(ζj) given by (5), and r−j ≥ 0, r+
j > 0, j = 1, . . . ,m.

Proposition 1: (Leyva et al., 2013). ψ∞,r(u) and

ψ1,1/r
(b) are gauges which are polar to each other (ψ∗

∞,r =
ψ1,1/r

and vice versa). Moreover, the polar set of (12) is

Bm
r

(∞)∗ :=
{

b ∈ R
m : ψ1,1/r

(b) ≤ 1
}

, (15)
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which is an m-octahedron, whenever 0 ∈ intBm
r

(∞).
The k-octants of the Euclidean space R

m, for k =
0, 1, 2, 3, . . . ,m, are the origin, positive/negative semiaxes,

quadrants, octants, and orthants (or m-octants), respec-

tively. An open orthant can be defined as C = {b ∈ R
m :

δjbj > 0, where each δj = −1 or 1, for j = 1, . . . ,m}, so

permutation of the signs δj yields 2m different orthants, e.g.

R
m
− and R

m
+ are the negative and positive open orthants with

δj = −1 & δj = 1, for all j = 1, . . . ,m, respectively.

Observe that in the case of an m-hyperbox, its support

function is ςBm
r

(∞)(b) = ψ1,1/r
(b), so it is a continuous and

piecewise linear function, where the domains of linearity are

given by the 2m orthants. Moreover, the corresponding null-

set Nς = {b ∈ R
m : ψ1,1/r

(b) = 0}, so that it is defined by

the following system of 2m homogeneous linear equations










v1 · b = 0, for b ∈ C1

...
...

vk · b = 0, for b ∈ C2m

(16)

Note that each equation is solved in its orthant Ci, for i =
1, . . . , 2m –the domains of linearity of ςBm

r
(∞).

Furthermore, the case of positive feedback controls is

already included, if we consider the positive m-hyperbox

Bm
r
+(∞) = [0, r+

1 ] × . . . × [0, r+
m] =

conv{(0, . . . , 0), (0, . . . , r+
1 ), . . . , (r+

1 , . . . , r+
m)},

(17)

with r+
j > 0 and r−j = 0, for all j = 1, . . . ,m. In this case,

we have that Nς is the negative closed orthant R
m
− .

Now, let us illustrate the introduced results, and also how

Nς changes in terms of the location of 0 in a rectangle.

Example. Let us consider the asymmetrical rectangle

B2
r
(∞) = [−r−1 , r+

1 ] × [−r−2 , r+
2 ], with r−j ≥ 0 and

r+
j > 0. Then, its set of vertices taken counterclockwise is

V = {(r+
1 , r+

2 ), (−r−1 , r+
2 ), (−r−1 ,−r−2 ), (r+

1 ,−r−2 )}. The

normal fan of B2
r
(∞) is given by the four quadrants of R

2,

where Ci denotes the ith quadrant taken counterclockwise.

First of all, if both r−1 , r−2 > 0, then (0, 0) ∈ intB2
r
(∞),

and Nς = {(0, 0)}. From (9)-(14), its support function is

ςB2
r
(∞)(b1, b2) = r1(b1) |b1| + r2(b2) |b2|

=















r+
1 b1 + r+

2 b2, if (b1, b2) ∈ C1

−r−1 b1 + r+
2 b2, if (b1, b2) ∈ C2

−r−1 b1 − r−2 b2, if (b1, b2) ∈ C3

r+
1 b1 − r−2 b2, if (b1, b2) ∈ C4

and we note that it is linear on each quadrant. Moreover,

from (10) we obtain that B2
r
(∞)∗ is a quadrilateral with

vertices at (1/r+
1 , 0), (0, 1/r+

2 ), (−1/r−1 , 0) & (0,−1/r−2 ).
Assume that r−1 = 0 but r−2 > 0, so that u1 is positive

and u2 is signed. Then, (0, 0) ∈ relint
(

{0} × [−r−2 , r+
2 ]

)

–a vertical edge of B2
r
(∞), and ςB2

r
(∞)(b) is positive semi-

definite: Nς = C2 ∩ C3 = {(b1, 0) : b1 ≤ 0} is the (non-

positive) b−1 −semiaxis. Analogously, if r−1 > 0 but r−2 = 0,

we obtain (0, 0) ∈ relint
(

[−r−1 , r+
1 ] × {0}

)

⊂ ∂B2
r
(∞),

and Nς = C3∩C4 = {(0, b2) : b2 ≤ 0} is the b−2 −semiaxis.

Finally, if both r−1 = r−2 = 0, then u is positive, and the

rectangle becomes the positive 2-hyperbox, B2
r
+(∞), so

that (0, 0) is a vertex of B2
r
+(∞), and Nς = C3.

In these cases, the polar B2
r
(∞)∗ is an unbounded poly-

gon with (0, 0) ∈ intB2
r
(∞)∗. E.g., in the latter case

B2
r
+(∞)∗ = ς−1

U [0, 1] = {b ∈ R
2 : ςU (b1, b2) ≤ 1} =

{(r+
1 b1 + r+

2 b2 ≤ 1) & (r+
2 b2 ≤ 1)& & (r+

1 b1 ≤ 1)},

which is a polygon with vertices at (1/r+
1 , 0) & (0, 1/r+

2 ),
containing properly the quadrant C3, and limited by the line

b2 = −r+
1 /r+

2 b1+1/r+
2 , the horizontal line b2 = 1/r+

2 and

the vertical line b1 = 1/r+
1 . In order to figure out how this

set looks like, take the limit of the quadrilateral polar set

B2
r
(∞)∗ as its vertices at (−1/r−1 , 0) & (0,−1/r−2 ) tend

to −∞ on their corresponding axes, or as r−1 , r−2 → 0+.¤

Remark 2.1. Our findings in this example, namely of how

Nς changes as the locus of (0, 0) moves as an interior point

through the faces F of B2
r
(∞), are summarized in the next

table. Observe that dimNς = m − dim F , with m = 2. ¤

TABLE I

Nς VS. LOCUS OF (0, 0) IN THE FACES OF B2
r
(∞)

Face F dim F Nς dim Nς

B2
r
(∞) 2 {(0, 0)} 0

{0} × [−r−
2

, r+

2
] 1 b−

1
−semiaxis 1

[−r−
1

, r+

1
] × {0} 1 b−

2
−semiaxis 1

{(0, 0)} 0 C3 2

The following result shows the geometric structure of Nς

in terms of the locus of the origin as a relative interior point

of the faces of an m-hyperbox Bm
r

(∞).
Theorem 6: Assume that Bm

r
(∞) is an m-hyperbox with

0 ∈ Bm
r

(∞) given by (12). Then, the null set Nς of

ςBm
r

(∞) is a polyhedral cone with apex at 0. Moreover, (a)

if 0 ∈ ∂Bm
r

(∞) is a vertex, then Bm
r

(∞) is the positive

hyperbox, and thus Nς = R
m
− ; otherwise, (b) Nς is an

(m − d)-octant of R
m, defined as the normal cone of the

d-face F of Bm
r

(∞) (1 ≤ d ≤ m), including the hyperbox

itself, such that 0 ∈ relintF , and given by the intersection

of the orthants corresponding to all the vertices of F .

Remark 2.2. Note that if F = {0} –a vertex of the

hyperbox, then we obtain the positive hyperbox Bm
r
+(∞)

and thus Nς = R
m
− ; whereas if F is the d-face (1 ≤ d ≤ m)

of the hyperbox such that 0 ∈ relintF , then Nς is a proper

subset of an intersection of Cartesian hyperplanes. ¤

III. THE GLOBAL STABILIZATION W.R.T. A HYPERBOX

In this section, we explore the geometry behind the CLF

stabilization of system (1) with CVS given by hyperboxes

containing the origin not necessarily as an interior point. In

particular, the important case of positive controls.

Now, let us return to our control problem. Assume that

U is a closed CVS with 0 ∈ U . Observe that (3) is solved

if there is a feedback u(x) taking values in ∂U such that

a(x) < b(x) · u(x), ∀x 6= 0. On the other hand, for any
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control u(x) taking values in U , we have that2: b(x)·u(x) ≤
µ∗(b(x))µ(u(x)). Then, for u = ω(x), with µ(ω(x)) ≡ 1
(i.e. ω(x) is valued in ∂U ) and recalling that µ∗(b) = ςU (b),

b(x) · ω(x) = ςU (b(x)). (18)

Hence, given a CLF, then any control ω(x) satisfying (18)

accomplishes the equivalence between (3) and inequality

∀x 6= 0, a(x) < ςU (b(x)). (19)

We will call a feedback ω(x) to be an optimal (a.k.a.

best rate) control law w.r.t. a CLF V (x) [for system (1) with

controls taking values in U ] iff it satisfies

∀x 6= 0, a(x) − b(x) · ω(x) = inf
u∈U

{a(x) − b(x) · u} < 0.

(20)

Hence, problem (3) is satisfied if there exists an optimal

control ω(x). However, from (18), it follows that ω(x) is

not admissible since it is singular at the null set

Nb := {x ∈ R
n : b(x) = 0}. (21)

In (Solı́s–Daun, 2013a), it was shown that the existence,

uniqueness and continuity of the optimal control ω(x) are

guaranteed, whenever U belongs to the class of all compact

strictly convex (no line segment is contained in ∂U ) CVS

U ⊂ R
m with 0 ∈ intU , denoted U(Rm). Specifically, it

was shown that if U ∈ U(Rm), then ςU (b) is C1(Rm\{0}),
and ω(x) is a gradient-based feedback control of the form

ω(x) := ω(b(x)), where ω(b) = (∇ςU (b))
⊤

, (22)

and b(x) is given by (4). Observe that ω(b) is continuous

for b 6= 0 and homogeneous of degree 0. Hence, note that if

we drop x, (18) becomes into the so-called Euler’s theorem

for (positively) homogeneous functions: b·∇ςU (b) = ςU (b).
Now, if ςU (b) is differentiable at b, then formula (22) is

still valid. Thus, if U = conv{v1, . . . , vk} –a polytope, then

ςU (b) is piecewise linear, so that from (22), ω(b) is constant

on the interior of each polyhedral cone intCi, and singular

at the switching surfaces ∂Ci, for i = 1, . . . , k, i.e.

ω(b) = (∇ςU (b))
⊤

=











v1, if b ∈ int C1

...
...

vk, if b ∈ int Ck.

(23)

Now, consider the m-hyperbox Bm
r

(∞) defined in (12),

with r−j ≥ 0 and r+
j > 0, for all j = 1, . . . ,m, so that

0 ∈ Bm
r

(∞). Recall that ςBm
r

(∞)(b) = ψ1,1/r
(b), which

is a positive definite function iff 0 ∈ intBm
r

(∞), but it

is only positive semi-definite if 0 ∈ ∂Bm
r

(∞). Moreover,

from Theorem 6, we have that Nς is an (m − d)-octant in

R
m, being the normal cone of the d-face F (1 ≤ d ≤ m)

of Bm
r

(∞) such that 0 ∈ relintF . On the other hand, if

2Gauges polar to each other satisfy the following important property:
u∗ · u ≤ µ∗(u∗) µ(u), ∀u ∈ domµ & ∀u∗ ∈ domµ∗. This expression
is the “best” inequality in the sense that it cannot be tightened by replacing
µ or µ∗ by lesser functions on larger domains. E.g., if µ is a p-norm, then
µ∗ is a q-norm (1/p + 1/q = 1) and it reduces to Hölder’s inequality.

F = {0} –a vertex, then we have the positive hyperbox

Bm
r
+(∞), and Nς = R

m
− . In any case, from (22), we obtain

ω(b) =
(

∇Σm
j=1 rj |bj |

)⊤
= (r1 sign b1, . . . , rm sign bm)

⊤

(24)

which is constant on each of the 2m open orthants of R
m.

For instance, in the case of Bm
r
+(∞), we have ω(b) ↾R

m
−

≡
0. Moreover, the switching surfaces Nj of ω(b) are the

Cartesian hyperplanes of R
m, Nj = {b ∈ R

m : bj =
0& bi 6= 0, i 6= j}, j = 1, . . . ,m, and besides ∩jNj = {0}.

Let us return to the dependence on the state variable

x ∈ R
n, and let b(x) be defined in (4). Observe that the

set Nb given by (21) can be defined as the preimage of 0
under the mapping b(x), i.e. Nb = b−1[0] = {x ∈ R

n :
b(x) = 0}. Analogously, we define the representation of

the orthant corresponding to each vertex vi of Bm
r

(∞), as

Ci = b−1[Ci] = {x ∈ R
n : b(x) ∈ Ci}, for i = 1, . . . , 2m.

Now, we denote the representation in R
n of the switching

surfaces Nj of ω(b) –the Cartesian hyperplanes of R
m, by

Nj = b−1[Nj ] = {x ∈ R
n : bj(x) = 0 & bi(x) 6= 0, i 6= j}

(25)

j = 1, . . . ,m, and the null set of ςBm
r

(∞) given by (11), by

Nς = b−1[Nς ] =
{

x ∈ R
n : ςBm

r
(∞)(b(x)) = 0

}

. (26)

Remark 3.1. Note that Nb = ∩jNj , and Nb ⊆ Nς , with

equality if 0 ∈ intU . Moreover, based on Remark 2.2, we

have that: (a) either Nς = b−1
[

R
m
−

]

, whenever 0 is a vertex

of the (positive) hyperbox; or (b) Nς ⊂ Nj for some j,

whenever 0 ∈ relintF , for a d-face F of the hyperbox. ¤

Hereafter, we denote by rj(x) := rj(bj(x)), with rj(ζj)
given by (5), for j = 1, . . . ,m, β(x) := ψ1,1/r(b(x)) and

ω(x) is defined by (22)-(24). Moreover, it is clear that ω(x)
is a singular function on ∪jNj . In particular, for the positive

hyperbox Bm
r
+(∞), we have that ω(x) ↾intNς

≡ 0.

Assume that V (x) a CLF w.r.t. system (1) with controls

taking values in an m-hyperbox Bm
r

(∞) containing 0.

Then, based on (18) and assuming the optimal control ω(x)
defined by (22)-(24), we have that for all x 6= 0,

dV/dt = a(x) − b(x) · ω(x) < 0 iff a(x) < β(x). (27)

Remark 3.2. Observe from (27) that3 ∀x 6= 0, if β(x) = 0
then a(x) < 0. Moreover, β(x) = 0 iff x ∈ Nς . ¤

IV. A FEEDBACK CONTROL DESIGN FOR A HYPERBOX

However, inasmuch as the optimal control ω(x) is singu-

lar, we study the conditions that feedback controls should

satisfy in order to be regular, take values in an m-hyperbox

Bm
r

(∞) with 0 ∈ Bm
r

(∞), and render system (1) GAS,

provided an appropriate CLF is known.

Now, assuming that U ⊂ R
m is a compact and strictly

convex set with 0 ∈ intU , in (Solı́s–Daun, 2013a) it was

considered general feedback controls of the form u(x) :=
ρ(x)ω(x), where ρ(x) is an rescaling function and ω(x) is

the best rate control. However, that designing can only deal

3In the definition of CLF w.r.t. U = R
m, this condition replaces (3).
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with the singularities of the control ω(x) at Nb. Henceforth,

following (Leyva et al., 2013; Solı́s–Daun & Leyva, 2011),

we propose feedback controls of the decentralized form

u(x) = (u1(x), . . . , um(x))
⊤

, uj(x) := ρj(x)ωj(x),
(28)

for j = 1, . . . ,m, where ω(x) is defined by ω(b) given by

(23) and b(x) given by (4), and ρ(x) = (ρ1(x), . . . , ρm(x))
is a rescaling vector function to be determined. Therefore,

the control scheme (28) will be used to address the global

CLF stabilization of (1) via feedback controls taking values

in Bm
r

(∞), either if 0 ∈ intBm
r

(∞) or if 0 ∈ ∂Bm
r

(∞).
Now, we ask the conditions that ρ(x) should satisfy in

order to guarantee the existence of an admissible feedback

control u(x) of the form (28) that renders system (1) GAS.

Hypothesis H. Assume that ρ : R
n → R

m is a regular

function such that

(i) ∀x ∈ R
n, 0 ≤ ρj(x) ≤ 1, for j = 1, . . . ,m,

(ii) ρj(x) = 0 iff x ∈ Nj , for j = 1, . . . ,m, and

(iii) ∀x ∈ R
n\Nς , ‖ρ(x)‖∞ > a(x)

β(x) .

Our main theorem in this section is the following.

Theorem 7: Assume V (x) is a CLF [for system (1) with

controls taking values in Bm
r

(∞) with 0 ∈ Bm
r

(∞) given

by (12)] satisfying the SCP, ω(x) is the optimal control

defined in (22)-(24) and ρ : R
n → R

m is a regular mapping

satisfying Hypothesis H. Then, u(x) given by (28) is an

admissible feedback control that renders system (1) GAS.

Proof: First of all, we have that u(x) given by (28)

is admissible: In fact, from Condition (i) we have that

uj(x) = ρj(x) ωj(x) = ρj(x)rj(x) sign bj(x) is equivalent

to −r−j ≤ −r−j ρj(x), if bj(x) < 0, or r+
j ρj(x) ≤ r+

j ,

if bj(x) > 0; so that uj(x) is valued in [−r−j , r+
j ], for

j = 1, . . . ,m. Thus, u(x) takes values in Bm
r

(∞).
Further, ∀x ∈ R

n\ ∪j Nj , we have that both ρ(x)
and ω(x) are continuous (recall that ω(x) is constant

on each open orthant), so that u(x) is continuous. In

the case that x ∈ Nj , since ρj(x) is continuous and

ωj(x) = rj(x) sign bj(x) is bounded, then from the SCP and

Condition (ii) it follows that ∀x∗ ∈ Nj , for j = 1, . . . ,m,

0 ≤ limx→x∗ |uj(x)| = limx→x∗ ρj(x) |ωj(x)| = 0,

then each entry uj(x) is continuous at Nj and uj(x) ↾Nj
≡

0. Based on Remark 3.1, we note that the regularity of u(x)
at the null set Nς has been already addressed above: Either

Nς ⊂ Nj for some j, or Nς = b−1
[

R
m
−

]

.

Finally, we show that the closed-loop system is GAS:

(a) If x ∈ Nς\{0}, then from Remark 3.2 it follows that

both a(x) < 0 and u(x) ↾Nς
≡ 0. Hence, we have that

dV/dt = a(x) − b(x) · u(x) = a(x) < 0, ∀x ∈ Nς\{0}.

(b) If x ∈ R
n\Nς , then there is at least a j (1 ≤ j ≤

m) such that bj(x) 6= 0. Then, from Proposition 1, the

definitions of β(x) and u(x), and Condition (iii), we obtain

dV/dt = a(x) − b(x) · u(x) < 0 iff
a(x) < ψ1,1/r

(b(x)) ψ∞,r (ρ1(x)ω1(x), . . . , ρm(x)ωm(x))
≤ β(x) ‖ρ(x)‖∞ ψ∞,r(ω(x)) = β(x) ‖ρ(x)‖∞ , where

‖ρ(x)‖∞ = maxj ρj(x). Therefore, dV/dt < 0, x 6= 0.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we address the problem of the global CLF

stabilization of affine control systems (1) w.r.t. r-weighted

m-hyperboxes Bm
r

(∞) with 0 ∈ Bm
r

(∞).
First, we show that for an m-hyperbox Bm

r
(∞), control

ω(x) is piecewise constant, with switching surfaces Nj

defined by the level sets (25): It is a bang-bang type control.

However, inasmuch as the feedback control ω(x) for an

m-hyperbox is not admissible (it is discontinuous at ∪jNj),

we consider feedback controls of decentralized form u(x) =
(u1(x), . . . , um(x))⊤, with components given by uj(x) =
ρj(x) ωj(x), where ρj(x) is a rescaling function used to

regularize ωj(x). Then, we study the conditions that such

controls should satisfy in order to be admissible (continuous

and valued in Bm
r

(∞)) and render system (1) GAS, provided

a CLF is known. We pay special attention to the case when

0 ∈ ∂Bm
r

(∞), and in particular to positive controls.

Finally, the generalization of the results w.r.t. polytopic

CVS U with 0 ∈ U and the design of an explicit control for-

mula valued in U (with signed/positive input components)

that renders system (1) GAS, are topics for future research.
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Leyva, H., J. Solı́s–Daun & R. Suárez (2013). Global CLF stabilization

of systems with control inputs constrained to a hyperbox. SIAM J.

Control Optim. 51, 745–766.
Lin, Y. & E. Sontag (1995). Control-Lyapunov universal formulas for

restricted inputs. Control: Th. Adv. Tech. 10, 1981–2004.
Malisoff, M. & F. Mazenc (2009). Constructions of Strict Lyapunov

Functions. Springer, London.
Malisoff, M. & E. Sontag (2000). Universal formulas for feedback stabi-

lization with respect to Minkowski balls. Syst. Ctrl. Lett. 40, 247–260.
Rockafellar, R. (1972). Convex Analysis, 2nd printing. Princeton University

Press. Princeton NJ.
Solı́s–Daun, J. (2013a). Global CLF stabilization of nonlinear systems. Part

I: A geometric approach – compact strictly convex CVS. SIAM J.

Control Optim. 51, 2152–2175.
Solı́s–Daun, J. (2013b). Global CLF stabilization of nonlinear systems.

Part II: An approximation approach – closed CVS. SIAM J. Control

Optim., submitted.
Solı́s–Daun, J. & H. Leyva (2011). On the global CLF stabilization of

systems with polytopic control value sets. Proc. 18th IFAC World

Congress, Milano, Italy, 11042–11047.
Sontag, E. (1989). A “universal” construction of Artstein’s theorem on

nonlinear stabilization. Syst. Ctrl. Lett. 13, 117–123.
Sontag, E. (1998). Control-Lyapunov functions. Open Problems in Math-

ematical Systems and Control Theory, V. Blondel, E. Sontag, M.
Vidyasagar & J. Willems, eds. Springer, London, 211–216.
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