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Abstract— This paper reports the presence of chattering
in a closed-loop fuzzy control system where the controller
was designed using the fuzzy Lyapunov synthesis. First, a
fuzzy control system is directly designed following the fuzzy
Lyapunov synthesis, where the existence of chattering effect
is identified experimentally. Then, a chattering-free fuzzy
control systems is proposed, where the fuzzy controller rule
base structure is modified in order to eliminate the chattering
effect while Lyapunov stability condition persists. The case of
study is a servomechanism with nonlinear backlash.
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I. INTRODUCTION

Fuzzy control is an excellent control strategy for nonli-

near systems like robot manipulators, this technique that

was and is hard criticized by traditional control experts

because fuzzy control is widely considered a control stra-

tegy based on problem-solving approach while traditional

control is considered a strategy based on stability testing

approach. In (Margaliot y Langholz, 1999; Margaliot y

Langholz, 2001) is reported the fuzzy Lyapunov synthesis

as an alternative in the design process of fuzzy controllers,

providing a qualitative analytical approach in the designing

process. This approach was then reported in (Cazarez-

Castro, 2009) and (Cazarez-Castro, 2011) for designing

closed-loop fuzzy controllers for nonsmooth mechanical

systems.

This paper is motivated by the robot manipulator depicted

in Fig. 1, which is mainly applied in industrial process,

(Cazarez-Castro, 2009) and (Cazarez-Castro, 2011). Robot

manipulators usually have problems in its joints due to the

presence of the backlash and friction. In this paper, we

will focus in one joint of the robot manipulator of Fig.

1 only, and the problem is to solve the output regulation

problem for the electrical actuator consisting of a motor

part driven by a DC motor and a reducer part (load)

Figure 1. Robot Manipulator.

operating under uncertainty conditions in the presence of

nonlinear backlash effects. The objective is to drive the

load to a desired position while providing the roundedness

of the system motion and attenuating external disturbances.

Because of practical requirements (see e.g., (Lagerberg y

Egardt, 1999)), the motor’s angular position is assumed to

be the only information available for feedback.

The rest of the paper is organized as follows. The

dynamic model of the non-minimum phase servomechanism

with nonlinear backlash and the problem statement are
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Figure 2. a) Dead-zone, b) monotonic approximation of backlash.

presented in Section II. Section III addresses fuzzy sets

and systems theory. The design of Fuzzy Logic Controllers

using the Fuzzy Lyapunov Synthesis is presented in Section

IV including experimental results. A second, chattering free

design including experimental results is presented in Section

V. Conclusions are presented in Section VI.

II. NONSMOOTH MECHANICAL SYSTEM: A

SERVOMECHANISM WITH NONLINEAR BACKLASH

II-A. Dynamic model

The dynamic model of the angular position qi(t) of the

DC motor and the qo(t) of the load are given according to

J0N
−1q̈0 + f0N

−1q̇0 = T + w0,

Jiq̈i + fiq̇i + T = τm + wi,
(1)

hereafter, J0, f0, q̈0 and q̇0 are, respectively, the inertia

of the load and the reducer, the viscous output friction,

the output acceleration, and the output velocity (Aguilar

et al., 2007). The inertia of the motor, the viscous motor

friction, the motor acceleration, and the motor velocity

are denoted by Ji, fi, q̈i and q̇i, respectively. The input

torque τm serves as a control action, and T stands for the

transmitted torque. The external disturbances wi(t), w0(t)
have been introduced into the driver equation (1) to account

for destabilizing model discrepancies due to hard-to-model

nonlinear phenomena, such as friction and backlash.

The transmitted torque T through a backlash with an am-

plitude j is typically modeled by a dead-zone characteristic

(Nordin et al., 2001, p. 7):

T (∆q) =

{

0 |∆q| ≤ j

K∆q −Kjsign(∆q) otherwise
(2)

with

∆q = qi −Nq0, (3)

where K is the stiffness, and N is the reducer ratio. Such a

model is depicted in Fig. 2. Provided the servomotor posi-

tion qi(t) is the only available measurement on the system,

the above model (1)–(3) appears to be non-minimum phase

because along with the origin the unforced system possesses

a multivalued set of equilibria (qi, q0) with qi = 0 and

q0 ∈ [−j, j].

To avoid dealing with a non-minimum phase system,

the backlash model (2) is replaced with its monotonic

approximation:

T = K∆q −Kη(∆q) (4)

where

η = −2j
1− exp

{

−∆q
j

}

1 + exp
{

−∆q
j

} . (5)

The present backlash approximation is inspired from

(Merzouki et al., 2004). Coupled to the drive system (1)

subject to motor position measurements, it is subsequently

shown to continue a minimum phase approximation of

the underlying servomotor, operating under uncertainties

wi(t), w0(t) to be attenuated. As a matter of fact, these

uncertainties involve discrepancies between the physical

backlash model (2) and its approximation (4) and (5).

II-B. Problem Statement

To formally state the problem, let us introduce the state

deviation vector x = [x1, x2, x3, x4]
T with

x1 = q0 − qd,

x2 = q̇0,

x3 = qi −Nqd,

x4 = q̇i,

where x1 is the load position error, x2 is the load velocity,

x3 is the motor position deviation from its nominal value,

and x4 is the motor velocity. The nominal motor position

Nqd has been pre-specified in such a way to guarantee that

∆q = ∆x, where

∆x = x3 −Nx1.

Then, system (1)–(5), represented in terms of the deviation

vector x, takes the form

ẋ1 = x2,

ẋ2 = J−1

0
[KNx3 −KN2x1 − f0x2 +KNη(∆q) + wo],

ẋ3 = x4,

ẋ4 = J−1

i [τm +KNx1 −Kx3 − fix4 +Kη(∆q) + wi].
(6)

The zero dynamics

ẋ1 = x2,

ẋ2 = J−1

0
[−KN2x1 − f0x2 +KNη(−Nx1)],

(7)

of the undisturbed version of system (6) with respect to the

output

y = x3 (8)

is formally obtained (see (Isidori, 1995) for details) by spe-

cifying the control law that maintains the output identically

to zero. The following result, extracted from (Orlov, 2005),
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guarantees that the error system (6) and (8) is globally

minimum phase.

The objective of the Fuzzy Control output regulation of

the nonlinear driver system (1) with backlash (4) and (5), is

thus to design a Fuzzy Controller so as to obtain the closed-

loop system in which all these trajectories are bounded and

the output q0(t) asymptotically decays to a desired position

qd as t → ∞ while also attenuating the influence of the

external disturbances wi(t) and w0(t).

III. FUZZY SETS AND SYSTEMS

A Type-1 Fuzzy Set (T1FS), denoted A is characterized

by a Type-1 membership function (T1MF) µA(z) (Castillo

y Melin, 2008), where z ∈ Z, and Z is the domain of

definition of the variable, i.e,

A = {(z, µ(z))|∀z ∈ Z} (9)

where µ(z) is called a Type-1 membership function of

the T1FS A. The T1MF maps each element of Z to a

membership grade (or membership value) between 0 and

1.

Type-1 Fuzzy Logic Systems (T1FLS) - also called Type-

1 Fuzzy Inference Systems (T1FIS)-, are both intuitive

and numerical systems that map crisp inputs into a crisp

output. Every T1FIS is associated with a set of rules with

meaningful linguistic interpretations, such as:

Rl : IF y is Al
1 AND ẏ is Al

2 THEN u is Bl
1, (10)

which can be obtained either from numerical data, or from

experts familiar with the problem at hand. In particular

(10) is in the form of Mamdani fuzzy rules (Mamdani y

Assilian, 1975)-(Mamdani, 1976). Based on this kind of

statements, actions are combined with rules in an ante-

cedent/consequent format, and then aggregated according

to approximate reasoning theory to produce a nonlinear

mapping from input space U = U1 × U2 × · · · × Un to

output space W , where Al
k ⊂ Uk, k = 1, 2, . . . , n, and the

output linguistic variable is denoted by τm.

A T1FIS consists of four basic elements (see Fig. 3):

the Type-1 fuzzifier, the Type-1 fuzzy rule-base, the Type-

1 inference engine, and the Type-1 defuzzifier. The Type-

1 fuzzy rule-base is a collection of rules in the form of

(10), which are combined in the Type-1 inference engine, to

produce a fuzzy output. The Type-1 fuzzifier maps the crisp

input into a T1FS, which are subsequently used as inputs to

the Type-1 inference engine, whereas the Type-1 defuzzifier

maps the T1FSs produced by the Type-1 inference engine

into crisp numbers.

In this paper, to get the crisp output of Fig. 3, a Centroid

of Area (COA) (Castillo y Melin, 2008) is computed as a

Type-1 defuzzifier. The COA is defined as follows:

τm = uCOA =

∫

u
µA(u)udu

∫

u
µA(u)du

(11)

Fuzzifier

Infer

Ru

Crisp

Fuzzy

inputs

Input sets

Defuzzifier

rence

ules

Crisp

Fuzzy

outputs

Output sets

Figure 3. Type-1 Fuzzy Inference System.

where µA(u) is the aggregated output T1MF. This is the

most widely adopted defuzzification strategy, which is remi-

niscent of the calculation of expected values of probability

distributions.

IV. DIRECT FUZZY CONTROLLER VIA FUZZY

LYAPUNOV SYNTHESIS

IV-A. First design

To apply the Fuzzy Lyapunov Synthesis, the following is

assumed:

1. The system may have really two degrees of freedom

referred to as x1 and x2, respectively. Hence by (6),

ẋ1 = x2.

2. The states x1 and x2 are the only measurable varia-

bles.

3. The exact equations (1)–(5) are not necessarily

known.

4. The angular acceleration ẋ2 is proportional to τm,

that is, when τm increases (decreases) ẋ2 increases

(decreases).

5. The initial conditions x(0) ∈ R
2 belong to the set

N = {x ∈ R
2 : ‖x − x∗‖ ≤ ε} where x∗ is the

equilibrium point.

The control objective is to design the rule-base as a fuzzy

controller τm = τm(x1, x2) to stabilize the system (1)–(5).

Theorem 1 that follows establish conditions that allows

the design of the fuzzy controller ensuring asymptotic

stability. The proof can be found in (Khalil, 2002).

Theorem 1 (Asymptotic stability (Khalil, 2002)):

Consider the nonlinear system (1)–(5) with an equilibrium

point at the origin, i.e., f(0) = 0 ∈ R
4, and let x ∈ N ,

then the origin is asymptotically stable if there exists a

scalar Lyapunov function V (x) with continuous partial

derivatives such that

V (x) is positive definite

V̇ (x) is negative definite.

The fuzzy controller design proceeds as follows. Let us

introduce the Lyapunov function candidate

V (x1, x2) =
1

2

(

x2

1 + x2

2

)

, (12)
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TABLE I

FIRST DESIGN FUZZY IF-THEN RULES

No. error change of error control

1 positive positive negative big
2 negative negative positive big
3 positive negative zero
4 negative positive zero

which is positive-definite and radially unbounded function.

The time derivative of V (x1, x2) results in:

V̇ (x1, x2) = x1ẋ1 + x2ẋ2 = x1x2 + x2ẋ2, (13)

To guarantee stability of the equilibrium point (x∗

1, x
∗

2)
T =

(0, 0)T it is necessary to have:

x1x2 + x2ẋ2 ≤ 0. (14)

Now, we can now derive sufficient conditions so that

inequality (14) holds: If x1 and x2 have opposite signs,

then x1x2 < 0 and (14) will hold if ẋ2 = 0; if x1 and x2

are both positive, then (14) will hold if ẋ2 < −x1; if x1

and x2 are both negative, then (14) will hold if ẋ2 > −x1.

The above conditions can be translated into the following

fuzzy rules:

If x1 is positive and x2 is positive then ẋ2 must be

negative big.

If x1 is negative and x2 is negative then ẋ2 must be

positive big.

If x1 is positive and x2 is negative then ẋ2 must be

zero.

If x1 is negative and x2 is positive then ẋ2 must be

zero.

However, using our knowledge that ẋ2 is proportional to

u, each ẋ2 can be replaced with u to obtain the following

fuzzy rule-base for the stabilizing controller:

If x1 is positive and x2 is positive then u must be

negative big.

If x1 is negative and x2 is negative then u must be

positive big.

If x1 is positive and x2 is negative then u must be

zero.

If x1 is negative and x2 is positive then u must be

zero.

This fuzzy rule-base can be represented as in Table I.

It is interesting to note that the fuzzy partitions for x1,

x2, and u follow elegantly from expression (13). Because

V̇ = x2 (x1 + ẋ2), and since is required that V̇ be negative,

it is natural to examine the signs of x1 and x2; hence, the

obvious fuzzy partition is positive, negative. The partition

for ẋ2, namely negative big, zero, positive big is obtained

similarly when plug the linguistic values positive, negative

for x1 and x2 in (13). To ensure that ẋ2 < −x1 (ẋ2 > −x1)
is satisfied even though do not know x1’s exact magnitude,

only that it is positive (negative), must set ẋ2 to negative

big (positive big). Obviously, it is also possible to start with

a given, pre-defined, partition for the variables and then

−1 0 1
0

0.5

1

domain x

µ
(x

)

negative

−1 0 1
0

0.5

1

domain x

µ
(x

)
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−1 0 1
0
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1

domain x

µ
(x

)
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−1 0 1
0
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Figure 4. Set of type-1 membership functions (x1, x2 and u).

TABLE II

NOMINAL PARAMETERS.

Description Notation Value Units

Motor inertia Ji 2.8×10
−6 Kg-m2

Load inertia Jo 1.07 Kg-m2

Motor viscous

friction fi 7.6×10
−7 N-m-s/rad

Load viscous
friction fo 1.73 N-m-s/rad

plug each value in the expression for V̇ to find the rules.

Nevertheless, regardless of what comes first, see that fuzzy

Lyapunov synthesis transforms classical Lyapunov synthesis

from the world of exact mathematical quantities to the world

of computing with words (Zadeh, 1996), (Mendel, 2007).

To complete the controller’s design, must model the

linguistic terms in the rule-base using fuzzy membership

functions and determine an inference method. Following

(Castillo et al., 2008), characterize the linguistic terms

positive, negative, negative big, zero and positive big. The

T1MFs are depicted in Fig. 4. To this end, had systema-

tically designed a FLC following the Lyapunov stability

criterion.

IV-B. First results

To perform experiments is used the dynamical model (1)–

(5), which involves a DC motor linked to a mechanical

load through an imperfect contact gear train (Aguilar et

al., 2007). The parameters of the dynamical model (1)–(5)

are in Table II, while N = 3, j = 0,2 rad, and K = 5
N-m/rad.

Applying this fuzzy controller to the proposed problem,

through experiments is obtained the system’s response tra-

jectories of Figs. 5 and 6, that is, q0 → qd while x1 → 0.

Fig. 7 shows the control signal provided by the fuzzy

controller, it is important to note that this signal have the

chattering effect.
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Figure 5. First system’s response for the experiment.
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Figure 6. First x1 and x2 trajectories.
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Figure 7. First control signal for the experiment with j = 0,2 and N=3.

TABLE III

SECOND DESIGN FUZZY IF-THEN RULES

No. error change of error control

1 positive positive negative big
2 negative negative positive big
3 positive negative zero
4 negative positive zero
5 negative zero positive
6 positive zero negative

V. CHATTERING-FREE FUZZY LOGIC CONTROLLER

V-A. Second design

Figure 7 confirms the chattering effect is present in the

first closed loop system designed following the fuzzy Lya-

punov synthesis, and it is important to make and extension

of the first design in order to avoid the chattering effect

while the closed loop system guarantee stability.

The controller proposed in Section IV guarantees that

(13) is semi-negative definite, but the designed fuzzy logic

controller solve the problem under chattering effect, this

is because there is no junction between the negative and

positive membership functions for the variable x2. Now it

is necessary to solve this problem without altering the fact

that (13) is negative semidefinite in (14), and to do this we

include the following rules:

If x1 is negative and x2 is zero then u must be positive.

If x1 is positive and x2 is zero then u must be negative.

This rules added to the fuzzy rule-base of Table I, result

on the fuzzy rule-base of Table III, and all considerations

exposed in Section IV remains, and the set of membership

functions remains like those shown on Fig. 4.

V-B. Second results

Experiments was performed as in Section IV. Applying

this fuzzy controller to the proposed problem, experiments

gives the system’s response trajectories of Figs. 8 and 9,

from experiments, that is, q0 → qd while x1 → 0. Fig. 10

shows the control signal provided by the fuzzy controller,

here it is important to note that this signal do not presents

the chattering effect.

VI. CONCLUSION

The main goal of this paper was to exhibit the presence

of chattering on fuzzy controllers designed using the fuzzy

Lyapunov synthesis. A change in the systematic methodo-

logy to design the fuzzy logic controller avoid the presence

of chattering at the output of a servomechanism with

nonlinear backlash. The proposed design strategy results in

controllers that guarantee that the load reaches the desired

position while the control inputs do not present chattering.

The regulation problem was solved as was predicted, this

affirmation is supported with experiments.
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