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Abstract

Coordinated tracking control for a group of
unicycle robots is investigated. To this end
a nonlinear coordination controller and the
subsequent Lyapunov asymptotic stability
analysis are proposed. The results are validated
in experiments using a group of 3 mobile robots.
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1 Introduction

It is not surprising that a group of robots can
execute more tasks and increase the maneuver-
ability than a sole element can do. For this rea-
son, coordination control of a group of multi-
ple vehicles is an intensive research field that
has been developed in the last years. This en-
compasses usage of cooperative robots, mobile
robots, spacecraft, aircraft, underwater vehicles,
among others [1]-[5]. Particularly, for mobile
robotics various applications can be encountered
e.g. simultaneous localization and mapping, ex-
ploration of unknown environments, automated
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highway systems, among others, (see [6]-[8]).
Formation control for a group of unicycle type
robots has been studied in [9]-[15], and several
approaches have been developed to solve prob-
lems that comprise formation control with sat-
urations constraints in control signals (see [11],
[14]), coordination control with collision avoid-
ance (see [14], [16]), and also using a virtual
structure approach ( [12], [13], [15]). All these
approaches are capable to keep the formation
structure and/or also trajectory tracking of all
robots. In some cases, some of them are capable
to drive the formation to the desired trajectories
even in case external disturbances are presented
[15].

The main contribution in this paper is a
control algorithm that ensures joint trajectory
tracking for a group of unicycle robots. The pro-
posed control guarantees asymptotic stability,
which is proven via Lyapunov like method, and
which is successfully validated in experiments.
Different from the control proposed in [15] where
the x, y, θ coordinates are coupled, the proposed
controller only requires coupling through the x
and y coordinates. Also, different from the con-
trol proposed in [14] the coupling errors are sim-
plified.

This paper is organized as follows. Section 2
describes previous work and the problem state-
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ment. In Section 3 the main result is showed. In
Section 4 simulations and experimental results
that validate the proposed control algorithm are
presented. And Section 5 provides some conclu-
sions and future work.

2 Controller design

As in [14] and [15], we consider a group of unicy-
cle mobile robots that have to mantain a desired
shape meanwhile each robot follows a desired
trajectory. To this end a nonlinear control ap-
proach, where all the robots are tracked to their
desired trajectory, is considered, this allows to
develop trajectories that fulfill the nonholonomic
side-slip constraint that unicycle robots posses.
The coupling between the robots is defined us-
ing their planar coordinates to develop different
trajectories.

A group of n unicycles mobile robots is consid-
ered. The kinematic model of each robot is de-
scribed by the following non-holomic model [17]

ẋi = vicosθi

ẏi = visinθi

θ̇i = ωi (1)

for i = 1, . . . , n, where xi and yi are the pla-
nar coordinates of the robot i, vi and ωi are the
linear and angular velocities, respectively, and
θi is the heading angle relative to the horizon-
tal axis of the reference frame. System (1) pos-
sesses a non-holonomic, no-side-slip constraint
ẋisinθi − ẏicosθi = 0. According to a reference
frame and by considering a desired posture (see
Figure 1), the tracking error is defined as follows:

xei = cosθi(xri − xi) + sinθi(yri − yi)
yei = −sinθi(xri − xi) + cosθi(yri − yi)
θei = θri − θi (2)

where the reference coordinates are xri, yri,
and θri.

Figure 1: The unicycle actual and desired coor-
dinates (1)

The error dynamics is given by:

ẋei = ωiyei − vi + vricosθei

ẏei = −ωixei + vrisinθei

θ̇ei = ωri − ωi (3)

Feasible desired trajectories for each robot i
fulfill the nonholonomic constraint, i.e. ẋisinθi−
ẏicosθi = 0, therefore for ẋri 6= 0 and ẏri 6= 0,
the reference linear and angular velocities de-
rived from the reference trajectory are:

vri =
√
ẋ2ri + ẏ2ri

ωri =
ẋriÿri − ẍriẏri

v2ri
(4)

The formation aim is defined as cooperative
tracking, that is each robot tracks its own ref-
erence trajectory and by requiring that this is
done in a balanced manner, the coupling errors
are defined as:(

xei − xej
yei − yej

)
→ 0,

∀i, j ∈ (1, 2, . . . , n) , i 6= j (5)
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It is desired that each robot tracks its refer-
ence trajectory, i.e. xei, yei, θei → 0, and com-
plying to a defined shape, i.e. each trajectory is
designed to keep an equal distance between the
robots. To achieve above mentioned aims the
following control laws for the linear and angular
velocities are proposed.

vi = vricosθei +

Cix

xei +

n∑
j=1,j 6=i

Cijx(xei − xej)


ωi = ωri + Ciθθei + vri

sinθei
θei

K

αi
Ciyyei +

n∑
j=1,j 6=i

Cijy(yei − yej)


(6)

Where Cix, Cijx, Ciy, Cijy, Ciθ and K are the
control gains, and the term αi is provided to
bound the effect of the tracking and coupling er-
rors and is defined as follows,

αi =
√
K2 + x2ei + y2ei + βij (7)

βij =

n∑
j=1,j 6=i

(xei − xej)2 +

n∑
j=1,j 6=i

(yei − yej)2

(8)

Remark. It can be noticed that in the pro-
posed controllers (see (6)), there is a compro-
mise between the tracking reference trajectory
errors xei, yei, θei and the formation errors [(xei−
xej), (yei− yej)], meaning that through the con-
trol gains Cix, Ciy, Ciθ the tracking aim is accom-
plished, whereas the formation aim is affected for
both gains, Cijx, Cix and Cijy, Cixy, for each xi
and yi, respectively.

Although the controller (6) is quite similar to
that presented in [14], we want to highlight its
main differences as follows:

• The coupling errors (see (5)) are not the
same, here these are are defined as [(xei −

xej), (yei− yej)] meanwhile in [14] they are
defined as RT (θi + θj)εij .

• We are not using saturation functions, and

• Finally , in the term αi (see (8)), it can be
appreciated that only the tracking error in
the planar coordinates xi, yi is considered,
and the coupling errors are not affected by
any gain of the form li,j .

The design parameters Cix, Cix and Ciθ are
the control gains that are responsible for track-
ing the reference trajectories of each robot. The
terms Cijx and Cijy are the coupling gains, and
they affect the coordination of the robots to the
formation. The gain K normalizes the term K

αi
to 1 when the tracking trajectory error and the
coupling error are zero, otherwise, bounds the
term [yi +

∑n
j=1,j 6=i Cijy(yei − yej)] in the com-

putation of the angular velocity ωi in (6).

3 Main result

The stability properties of control law (6) in
closed-loop with system (1) are provided through
Lyapunov stability analysis in the following the-
orem.

Theorem 3.1 (Formation control). Consider
the system described by (1) with i = 1, . . . , n
and the control (6). Assuming that the desired
trajectories are provided by (4) that fulfill the
non-holonomic constraint ẋisinθi − ẏicosθi = 0.
Moreover, assume that the control parameters
fulfill:

Cix, Cix, Ciθ, Cijx, Cijy,K ∈ R+ (9)

Then, the tracking error dynamics (3) for each
robot i = 1, . . . , n are global asymptotically stable
at zero. As a consecuence the coupling errors (5)
converge to 0 as well.

Proof: Consider the positive definite and
proper Lyapunov function candidate as:

V =
1

2

[
n∑
i=1

x2ei +

n∑
i=1

y2ei +

n∑
i=1

θ2ei

]
(10)
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We obtain the time derivative of the proposed
Lyapunov (10) function along the solutions of
the closed-loop system (3)-(6),

V̇ = −[CθθTe θe + XeC
xxe + ΓvrsinθC

yye] ≤ 0
(11)

where xe = [xe1, . . . , xen]T , ye =
[ye1, . . . , yen]T , and θe = [θe1, . . . , θen]T ,
are the error vectors, meanwhile Xe =
diag[xe1, . . . , xen]. Cθ = diag[C1θ, . . . , Cθn],
Γvrsinθ = diag[vr1sinθe1

K
α1
, · · · , vrnsinθen K

αn
]

and matrices Cx, Cy are shown in equations
(18)-(20).

From (11) we have the following facts:

• Γvrisinθ vanishes along the trajectories be-
cause

lim
t→0

vrisinθei
K

αi
= 0

• Cx is a positive definite matrix, due the
fact that Cix and Cijx are definite posi-
tive with dominant terms in the diagonal,
which by definition are positive, moreover,
πix > CixCijx, therefore, Cx > 0. For this
reason the term Cx(πix)xTe xe ≥ XeCxxe,
with Cx(πix) = diag(π1x, . . . , πnx). More-
over, if all the coupling gains and the track-
ing gains are chosen to be equal for the n
robots, i.e., Cijx = Cijy and Cix = Ciy with
i, j = 1, . . . , n and j 6= i it is ensured that
matrix Cx is symmetric and therefore pos-
itive definite due to the dominant diagonal
terms. In contrary case we always can en-
sure that the diagonal terms are higher than
the others.

• The remaining term in (11), CθθTe θe is def-
inite positive.

Due to the facts above it can be deduced that
the Lyapunov function (10) is positive definite
and radially unbounded, and its time derivative
(11) negative semi-definite along the trajectories
as:

V̇ ≤ −
[
CθθTe θe + Cx(πix)xTe xe

]
≤ 0 (12)

From the inequality (12) we have that

0 ≥
∫ ∞

o

dV (t) ≥ −
{∫ ∞

0

CθθTe θedt

+

∫ ∞

0

Cx(πix)xTe xedt
}

(13)

Since V > 0 outside x = 0, and CθθTe θe,
Cx(πix)xTe xe are positive functions, and also con-
sidering that system (3) is uniformly continuous
in [0,∞), with Barbalat’s lemma we get:

lim
t→0

(
CθθTe θe + Cx(πix)xTe xe

)
= 0 (14)

which implies that

lim
t→0

(
||θe||+ ||xe||

)
= 0 (15)

From the closed-loop dynamics of θ̇e with con-
troller (6) we have that:

θ̇e = −Cθθe − ΓCyye (16)

where Γ = diag[vr1
sinθe1
θe1

, . . . , vrn
sinθen
θen

].
Therefore, since from (15) θe = [0] and by (16)
we have that

lim
t→0

ΓCyye → 0 (17)

The only possible solutions implies that ye →
0, then, it can be concluded that the control law
(6) in closed loop with the error dynamic sys-
tem (3) drives the trajectory errors (2) to zero.
Hence, the original system composed by n robots
(1) reaches the desired trajectories and the cou-
pling error εij is driven to 0, where each robots
keeps a desired shape, therefore, the origin is
asymptotically stable. �

4 Experimental results

To see the performance of controller (6) an ex-
periment was developed with three e-puck mo-
bile robots [18]. The e-puck robot has two driven
wheels, which are individualy actuated by means
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of stepper motors. Two cameras are used for
acquiring position and orientation of all robots
and a PC. The PC generates the robot trajecto-
ries, process images to get the actual pose of the
robots, and runs control laws for all the robots.
The length, width and height of the arena are
2.2, 3.2 and 2.3 meters, respectively. The con-
trol velocities are sent from the PC to the robots
via BlueTooth protocol. The control gains used
are Cijx = Cjix = Cijy = Cjiy = 1, Cix = 2,
Ciy = 100 and Ciθ = 0.5. In Figure 2 the shape
of a circular trajectory of radius r = 0.5 meters
for all the robots is presented and a disturbance
is made in robot i = 2 which is moved away from
its trajectory. It can be seen that despite this
disturbance, all robots recover their desired tra-
jectories. The forward and angular velocities, vi
and ωi, respectively, which are the control inputs
are shown in Figures 3-4, whereas the tracking
errors are depicted in Figure 5.
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Figure 2: Formation and tracking trajectory for
i = 3 using control(6).

5 Conclusions

A nonlinear coordination controller for a group of
unicycle robots is presented and its performance
is demonstrated by experiments. Global asymp-
totic stability of the closed loop system with the
proposed controller is proven by using Lyapunov
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Figure 3: Linear velocity vi.
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Figure 4: Angular velocity ωi.
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Figure 5: Tracking errors.

methods. As future work the incorporation of
additional robots to the formation can be con-
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sidered.
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C
x

=



π1x −C1xC1jx · · · −C1xC1jx
−C2xC2jx π2x · · · −C2xC2jx

.

.

.

.

.

.

.
.
. 0

−CnxCnjx · · · −CnxCnjx πnx


(18)

C
y

=



π1y −C1yC1jy · · · −C1yC1jy
−C2yC2jy π2y · · · −C2yC2jy

.

.

.

.

.

.

.
.
.

.

.

.
−CnyCnjy · · · −CnyCnjy πny


(19)

with

πix = (1 + (n− 1)Cijx)Cix,

πiy = (1 + (n− 1)Cijy)Ciy −
αi

KCiy

for i, j = 1, . . . , n j 6= i. (20)
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