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Abstract—In this paper we consider the path following problem
for a class of mobile robot. The problem is tackled by considering
an output maneuvering nonlinear controller. The general control
scheme is based on a combination of the well known input-output
feedback linearization approach and the output maneuvering
control technique introduced in (R. Skjetne and Kokotovic, 2004).
It is assumed the availability of an external localization system
and it is shown that the closed–loop system is asymptotically
stable and the path following error converges asymptotically to
zero when an accurate localization system is considered and
that when this measurement is not accurately estimated the
closed–loop dynamics remains ultimately bounded. Numerical
simulations are carried out to show the overall performance of
the proposed scheme.

I. INTRODUCTION

In recent years, autonomous robots have demonstrated

their usefulness in different applications ranging from very

expensive military applications to relatively cheap and mass

produced home applications. To extend the civilian potential

uses of autonomous robots, for instance in surveillance ap-

plications, the capability to plan paths and to follow them

accurately, specially when non expensive position sensors are

used, is of great importance.

Mobile robot localization is a fundamental problem in mo-

bile robot applications, the many partial solutions can roughly

be categorized into two groups: relative and absolute position

measurements, (Borenstein et al., 1997). For indoor appli-

cations both groups of solutions, such as odometry, inertial

navigation, active beacons and landmark navigation, provide

relatively accurate position measurements mainly because the

environment is in some sense controlled. For instance, the

terrain can be carefully selected to reduce slipping for a

successful odometry application. However, for outdoor appli-

cations the mobile robot localization problem has not many

successful solutions; in this case it is more difficult to achieve

a tight control of the environment. Some promising solutions

for mobile robot localization have been obtained by means of

global positioning systems (GPS), inertial measurement units

(IMU) and compass sensors (CS). These measurements are

fused to provide an estimation of the position of the mobile

robot with respect to an inertial frame. However, due to the

deliberated small errors in timing and satellite position of the

GPS, there is a bias error associated to the GPS, IMU and CS

based position measurement.

Current position measurement systems available in the civil

market, based on GPS, IMU and MC, have an associated bias

of approximately 10 m virtually unchanging over a long period

of time and a random error in the range of 2 − 3 m. A suc-

cessful control strategy to perform trajectory tracking or path

following must be robust against this position measurement

errors. For instance in (D. R. Nelson and Beard, 2007) a

successful path following scheme for miniature air vehicles

is achieved in the presence of this kind of localization errors.

Even though, the closed–loop stability analysis in the presence

of localization errors is not performed, the experimental results

show that the controller is able to handle such localization

errors.

Several approaches have been proposed for car-like mobile

robots trajectory tracking; (C.Samson, 2003), (Jiang and Ni-

jmeijer, 1997) and path following; (Altafini, 2003), (Soetanto

et al., 2003). See (A. P. Aguiar, 2007) for a solution of both

problems: trajectory tracking and path following in the case of

parametric modeling uncertainty. In (Wang and Low, 2008),

it is introduced a model of the car-like mobile robot in the

presence of skidding and slipping effects, then in (Low and

Wang, 2008) a robust control scheme against the skidding

and slipping effects based on a backstepping technique is

presented. Experimental results are performed using a high

grade GPS to measure position and velocity.

Control strategies for trajectory tracking have the objective

of driving the mobile robot to a certain point of the trajectory at

a particular time. Hence, trajectory tracking control strategies

rely on precise mobile robot localization algorithms. The

trajectory tracking error will increase without taking into

account the actual position of the mobile robot. On the other

hand, control strategies for path following have the primary

objective of driving the mobile robot to the path unrelated

to time and as a secondary objective to satisfy an additional

dynamic specification, for instance the speed along the path.

Another topic to be considered in mobile robot applications

is the path generation problem. The path generation algorithm

must produces feasible trajectories that satisfy exact timing or

path length constraints. In (E. P. Anderson and McLain, 2002)

is proposed a trajectory generation algorithm that decomposes

the trajectory generation problem into two steps: a way point

planning step, where the straight line paths are not time-

parametrized, and a time-parametrized trajectory generation



step to smooth the way point paths into dynamically feasible

trajectories. In (A. Piazzi and Romano, 2007) its is proposed

a new path primitive called η3-spline which permits the

interpolation of an arbitrary sequence of points with associated

arbitrary tangent directions, curvatures, and curvature deriva-

tives. In (Ambrosino et al., 2009) it is presented a suboptimal

2-D path satisfying initial and terminal conditions, specified in

terms of position and heading angle. An empirical extension

is presented for the 3-D case. A common issue in this non

exhaustive review of path generation algorithms is that they

rely on an accurate mobile robot localization. In this work

we solve the path generation problem by means of a special

planar curve that produces a path that allows to survey two

supposed hot points, the Cassini’s oval, (Lawrence, 1972).

In this paper, we propose an output maneuvering nonlinear

controller for the car-like mobile robot. The control approach

is based on a combination of the input-output feedback lin-

earization ((D’Andrea-Novel et al., 1992), (Oriolo et al., 2002),

(Orosco et al., 2002)) control technique and the output ma-

neuvering control approach introduced in (R. Skjetne and

Kokotovic, 2004). It is shown that the closed–loop system is

asymptotically stable and the path following error converges

asymptotically to zero when an accurate car-like mobile robot

localization system is available, and it is shown that when

the car-like mobile robot position is not accurately estimated

the closed–loop dynamics remains ultimately bounded and the

path following error converges to a neighborhood of zero.

Numerical simulations are carried out to show the overall

performance of the proposed scheme in both cases.

The rest of the paper is organized as follows. In Section

II we describe the kinematic model of the car–like mobile

robot and formulate the path following control problem that

we address. Section III presents a nonlinear control law to

solve the path following problem and discusses the stability

of the resulting closed–loop system in both cases: accurate

and non accurate car-like mobile robot localization. In Section

IV we illustrate the main features of the proposed control

scheme through numerical simulations. Finally, in Section V

the paper concludes with remarks about the proposed results

and recommendations for further research.

II. KINEMATIC MODEL OF THE CAR-LIKE MOBILE ROBOT

The wheeled mobile robot considered in this work is of

a (1, 1)–type ((Campion et al., 1996), (Campion and Chung,

2008)), it possesses one degree of mobility and one degree of

steerability, known as the car-like mobile robot. This wheeled

mobile robot has front parallel steerable wheels and fixed

parallel rear wheels, see figure 1.

Let {X i, Y i} denote a right- hand inertial frame, and let

{Xb, Y b} denote a right-hand frame fixed to the car-like

mobile robot at the reference point P . In Figure 1,

X =
[

x y
]⊤

(1)

denotes the reference point P inertial coordinates, ζ denotes

the front wheel steering angle, ψ denotes the car-like mobile

robot orientation and ℓ denotes the car-like mobile robot

X i

Y i

Y b

x

Xb

y
ψ

ζ

V

ℓ
P

Fig. 1. Car-like Mobile Robot

wheelbase. Summarizing, the car-like mobile robot posture is

defined as q =
[

x y ψ
]⊤

Under the kinematic constraints of non slipping and pure

rolling condition the posture kinematic model for the car-like

mobile robot is described by the following set of differential

equations

ẋ = V cos(ψ)

ẏ = V sin(ψ)

ψ̇ = V
ℓ
tan(ζ)

(2)

where V denotes the velocity of the car-like mobile robot.

The path following control problem can be stated as

in (R. Skjetne and Kokotovic, 2004). Given a desired

parametrized path

Yd =
{

y ∈ R
m

: ∃ θ ∈ R such that y = yd(θ)
}

(3)

where yd(θ) is continuously parametrized by the path, the

output maneuvering problem with speed assignment comprises

two tasks:

• Geometric task. Force the output y to converge to the

desired path yd(θ),

lim
t→∞

|y(t)− yd(θ(t))| = 0

• Speed assignment. Force the path speed to converge to a

desired speed vs

lim
t→∞

|θ̇(t)− vs(t)| = 0

Hence, we define:

Control objective. Let Xd(θ) ∈ R
2

be a desired path for

the car-like mobile robot position parametrized by θ ∈ R

and vs ∈ R a desired speed assignment. Assume that Xd(θ)
is smooth with respect to θ and its first two derivatives are

bounded. Design a control law such that all the closed–

loop signals are bounded, the car-like mobile robot position

converges and remains in the desired path. Moreover, in the

presence of mobile robot localization errors the car-like mobile



robot position remains inside a tube centered at the desired

path.

In (R. Skjetne and Kokotovic, 2004) a solution for the robust

output maneuvering problem is proposed for systems in strict

feedback form of vector relative degree n

ẋ1 = G1(x1)x2 + f1(x1) +W (x1)δ1(t)

ẋ2 = G2(x1, x2)x3 + f1(x1, x2) +W (x1, x2)δ2(t)

...

ẋn = Gn(x1, · · · , xn−1)u+ f(x1, · · · , xn−1)

+Wn(x1 · · ·xn−1)δn(t)

y = h(x1)

where xi ∈ R
m

, i = 1, · · · , n are the state, y ∈ R
m

is

the output , u ∈ R
m

is the control, and δi(t) are unknown

bounded disturbances. The matrices Gi, fi and Wi are smooth

with Gi and ∂h
∂x1

invertible. Note that the control problem

addressed in this work is slightly different as the disturbance

appears through the output of the system.

III. PATH FOLLOWING CONTROL SCHEME

In this Section we show that a solution to the control

objective can be obtained combining the input-output feedback

linearization control technique (Isidori, 1995) and the output

maneuvering control technique introduced in (R. Skjetne and

Kokotovic, 2004). To begin with, we consider a dynamic

extension to the car-like mobile robot kinematic model (2)and

consider also tan(ζ) as the second control signal. Under these

conditions,

ẋ = V cos(ψ)

ẏ = V sin(ψ)

ψ̇ = V
ℓ
u2

V̇ = u1

(4)

Let us define the path error equation as follows

E1 = X −Xd(θ) (5)

where

Xd =
[

xd(θ) yd(θ)
]⊤

Straightforward computations show that

E2 = Ė1 = Ẋ −
∂Xd

∂θ
(vs − ωs) (6)

where we have considered

θ̇ = vs − ωs

with ωs the virtual control law to achieve the speed assignment

and vs the desired path speed. In this paper, vs takes a constant

value. Due to the dynamic extension the control signals do not

appear in (6). Taking the time derivative of E2 we obtain

Ė2 =M(ψ, V )U − F (θ)(vs − ωs)
2 +G(θ)ω̇s

where

M(ψ, V ) =





cos(ψ) −V 2

ℓ
sin(ψ)

sin(ψ) V 2

ℓ
cos(ψ)



 , U =

[

u1

u2

]

G(θ) =





∂xd

∂θ

∂yd

∂θ



 , F (θ) =





∂2xd

∂θ2

∂2yd

∂θ2





Defining

U =M(ψ, V )−1
[

−KDE2 −KPE1 + F (θ)(vs − ωs)
2
]

(7)

where KD and KP are positive definite matrices, the closed–

loop system (4)-(7) reads as

χ̇ = Aχ+Bω̇s (8)

where

A =

[

02 I2
−KD −KP

]

, B =

[

01
G(θ)

]

, χ =

[

E1

E2

]

with 02 and I2 the zero matrix and the identity matrix of

dimension 2× 2 and 01 a zero vector of dimension 2× 1.

Note that the closed–loop system in (8) is a linear system

in χ =
[

E⊤
1 E⊤

2

]⊤
perturbed by a term that depends on

the parametrization variable of the path and the virtual control

related to the speed assignment task. In order to accomplish

the control objective we would like to be able to relate the

virtual control law ωs with the distance to the desired path.

Following the work of (R. Skjetne and Kokotovic, 2004),

we consider the following Lyapunov function

V =
1

2
χ⊤Pχ+

1

2
ω2

s (9)

with χ =
[

E⊤
1 E⊤

2

]⊤
. The time derivative of the Lya-

punov function along the trajectories of (8) gives

V̇ = χ⊤
(

PA+A⊤P
)

χ+
(

χ⊤PB + ωs

)

ω̇s

By selecting the gain matrices KD and KP in such a way

that the matrix A is a Hurtwitz matrix, and by defining ω̇s as

follows

ω̇s = −γ
(

ωs +B⊤Pχ
)

(10)

we obtain

V̇ = −
1

2
χ⊤Qχ− γ

(

χ⊤PB + ωs

)2

(11)

for a positive definite matrix Q. Hence, we have

Proposition 1: Assume that the desired path Xd(θ) is

smooth, with respect to θ, and its derivatives are bounded.

Assume that the car-like mobile robot position X is accurately

measured or estimated. Consider the car-like mobile robot

kinematic extended model (4) in closed–loop with the control

law defined by (7)-(10). Then, for any positive constant γ and

any desired constant speed vs, the equilibrium

χ = 0, θ̇ = vs (12)

is asymptotically stable.



Proof 2: Straightforward computations shows that the

closed–loop system (4)-(7)-(10) is described by the following

equations

χ̇ = Aχ−Bγ
(

ωs +B⊤Pχ
)

θ̇ − vs = −ωs

ω̇s = −γ
(

ωs +B⊤Pχ
)

(13)

Note now that the Lyapunov function (9) is positive definite

radially unbounded and has a unique minimum at χ = 0 and

ωs = 0. In addition, from (11) we conclude that the closed–

loop trajectories converge to the largest invariant set contained

in

D =

{

χ ∈ R
2
, ωs ∈ R|

1

2
χ⊤Qχ+ γ

(

χ⊤PB + ωs

)2

= 0

}

(14)

Finally, it is easy to verify that the largest invariant set of

the closed-loop system is compatible with (12). This concludes

the proof.

Consider now the case with mobile robot localization errors.

In this case the position measurement has a bounded but

unknown component δP (t), that is

Xm = X + δP (t) (15)

with |δP (t)| ≤ κδ. Fortunately, the velocity error estimated

from the combination of GPS, IMU and MC is not obtained

as δ̇P (t). In fact, the velocity error is significantly smaller than

the position error, we denote this by δV (t). Since in general

it is obtained a good estimation of this signal, we assume in

this work that δV ≈ 0.

Note now that replacing the measured car-like mobile robot

position (15) in the feedback control law (7)–(10), we obtain

U = M(ψ, V )−1 [−KDE2 −KPE1 +KP δP (t)

+F (θ)(vs − ωs)
2
]

ω̇s = −γ
[

ωs +B⊤Pχ+G⊤P12δP (t)
]

(16)

where we have taken into account that

P =

[

P11 P12

P12 P22

]

The time derivative of the Lyapunov function (9) along the

trajectories of the closed–loop dynamics (4)–(16) reads as

V̇ = −χ⊤Qχ− γ
(

χ⊤PB + ωs

)2

+χ⊤PK̄P δP (t) + γ
(

χ⊤PB + ωs

)

G⊤P12δP (t)

where

K̄P =

[

02
KP

]

Upper bounding the time derivative of the Lyapunov function

we have

V̇ ≤ −‖χ‖2 − γ‖z‖2 + ‖P‖‖KP‖κδ‖χ‖

+γκG‖P12‖κδ‖z‖

where we have defined z = χ⊤PB + ωs, ‖G‖ ≤ κG and

considered Q = I2. For 0 < σi < 1, i = 1, 2 we have

V̇ ≤ −(1− σ1)‖χ‖
2 − (1 − σ2)‖z‖

2, ∀

‖χ‖ ≥ ‖P‖‖KP ‖κδ

σ1

, ‖z‖ ≥ γκGκδ‖P12‖
σ2

Hence, we have

Proposition 3: Assume that the desired path Xd(θ) is

smooth, with respect to θ, and its derivatives are bounded.

Assume that the car-like mobile robot position X is measured

from (15) . Consider the car-like mobile robot kinematic

extended model (4) in closed–loop with the control law defined

by (7)-(10). Then, for any positive constant γ and any desired

constant speed vs, the trajectories of the closed–loop system

are uniformly ultimately bounded.

Proof 4: The results follows form the previous computa-

tions and the results on stability of systems perturbed by non

vanishing perturbations (Khalil, 2002).

IV. NUMERICAL SIMULATIONS

We performed numerical simulation to evaluate the overall

performance of the proposed control scheme. We consider

as a desired path a Cassini’s oval, this curve was selected

because generates a path that gives a possible solution to

the hypothetical problem of surveying two points, located at

curve’s focus. The desired Cartesian coordinates parametrized

by θ are given by (Lawrence, 1972)

Xd =

√

a2 cos(2θ) +

√

b4 − (a2 sin(2θ))
2

[

cos(θ)
sin(θ)

]

with a, b constants that define the final shape of the oval, we

consider b = 1.5a. As we expect to test the proposed controller

experimentally on a soccer field, we take a = 40 m.

We consider KP = diag{kp, kp} and KD = diag{kd, kd},

consequently

P11 = any positive definite matrix

P12 = 1

2
K−1

D

P22 = 1

2

(

K−1

P +K−1

D K−1

P

)

Note that P11 is not necessary for control implementation. The

controller parameters are summarized in the Table I and the

initial conditions in all simulations are summarized in Table

II. The car-like mobile robot wheelbase is ℓ = 0.3 m.

TABLE I
CONTROLLER PARAMETERS

kp kd γ vs
6 8 5 0.5

Figure 2 shows the path followed by the car-like mobile

robot in the case of trivial localization errors. As it can

be observed the car-like mobile robot follows precisely the

desired path as predicted by the theoretical computations. The

path error signals are shown in Figure 3.



−80 −60 −40 −20 0 20 40 60 80
−50

0

50

x [m]

y
 [

m
]

Fig. 2. Simulation results of the path following controller in the idea case.
Desired path (dashed line), mobile robot path (continuous line)
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Fig. 3. Path following errors. (top) x− xd(θ), (bottom) y − yd(θ).

The time history of the control signals is shown in Figure 4.

As it can be observed the initial conditions are not close to the

desired path this produces high control signals at the beginning

of the numerical simulations. We have saturated both control

signals.

Figure 5 shows the remaining closed–loop system states,

that is, the car-like mobile robot velocity and yaw angle. As

it can be observed both signals remain bounded.

Finally, in Figure 6 we show the time evolution of the

path parameter θ, which as it can be observed has a behavior

similar to time, and the evolution of the speed controller ωs

which remains bounded and converges to zero. Note that the

convergence of ωs is quite slow.

We consider now the case of non zero localization errors

with the following model for the position error measurement

δP (t) = ∆1 +∆2 (17)

where ∆1 represents the approximately constant error, set as

TABLE II
INITIAL CONDITIONS

x(0) y(0) V (0)
30 −10 0.5
ψ(0) θ(0) ωs(0)
π/4 0 0
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Fig. 4. Control signals. (top) u1, (bottom) u2.
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Fig. 5. (top) Car-like mobile robot velocity V , (bottom) car-like mobile
robot yaw ψ.
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Fig. 6. (top) Path parameter θ, (bottom) speed assignment controller ωs.

10 m, and ∆2 is a random error between 0 − 3 m. Figure 7

shows the car-like mobile robot in the presence of localization

errors. As it can be observed the path followed by the car-like

mobile robot remains close to the desired path. This is very

promising concerning experimental evaluation of the proposed

controller as our available localization system has an error

similar to the error modeled in equation (17).

Figure 8 shows the time histories of the path following

errors as it can be observed the proposed controller is not

able to drive it to zero, however the path errors have a bounded

behavior as predicted by the theory.

Figure 9 shows the time histories of the control inputs while

Figure 10 shows the behavior of the car–like velocity and yaw
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Fig. 7. Simulation results of the path following controller in the case of
mobile robot localization errors. Desired path (dashed line), mobile robot
path (continuous line)
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Fig. 8. Path following errors. (top) x− xd(θ), (bottom) y − yd(θ).
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Fig. 9. Control signals. (top) u1, (bottom) u2.
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Fig. 10. (top) Car-like mobile robot velocity V , (bottom) car-like mobile
robot yaw ψ.

angle.

Finally, we show the time histories of the parameter of

the path and the speed assignment controller. As it can be

observed, the virtual controller ωs does not converge to zero

but remains bounded.

V. CONCLUSION

The problem of path following for the car–like mobile

robot has been addressed and solved by means of a nonlinear

controller based on input–output feedback linearization and the

output maneuvering control approach introduced in (R. Skjetne

and Kokotovic, 2004). We have analyzed the proposed con-

troller in two scenarios, the first one assumes that the car–

like mobile robot position is accurately measured or estimated

and the second case considers that there is an error in the

car–like mobile robot localization system. As expected the

performance of the proposed controller is degraded due to the

errors in the localization system however it keeps all signals

bounded. Numerical simulations have been used to illustrate

the properties of the closed–loop system.

Some issues are left open in this work. First, the computa-

tion of the ultimate state bounds and a possible modification

of the proposed controller to have a positive effect on these

bounds. Second, the experimental test of the proposed con-

troller and the inclusion of skidding and slipping effects.
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Fig. 11. (top) Path parameter θ, (bottom) speed assignment controller ωs.
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