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Abstract: We investigate the stabilization of dynamical networks of different nodes for the
case where the nodes, although different, can be make passive by feedback. The so-called V-
stability characterization of the network allows for a simple set of conditions for the stabilization
of the network. In particular, using the pinning control strategy to stabilized the network, the
V-stability characterization proves advantageous as the stabilization condition reduces to the
design of feedback gains that make a matrix negative definitive. Further, we extend these
results for the tracking problem in networks, by imposing a reference trajectory to the network
of different nodes by pinning some nodes to the desired solution. We illustrate our results with
numerical simulation of well-known benchmark systems.
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1. INTRODUCTION

Many complex systems of interest can be modeled as
networks, including the Internet, WWW, genetic net-
works, social networks, and many others [Newman (2010);
Bornhold and Schuster (2003)]. The dynamical analysis
of the different behaviors that can occur in a dynamical
network have become of great interest in recent years
[Wang y Chen (2003); Bocalletti et al. (2006); Arenas et
al. (2008); Stefánski (2009); Su and Wang (2014)]. The
dynamical analysis of dynamical networks differs from
general dynamical systems in the fact that its behavior
is determine by two components: The rules governing
the evolution of the states of its nodes; and the infor-
mation flows traveling along its links, that is isolated
dynamics and network topology [Wu1995 (1995); Wang
(2002); Wang2002a (2002); Wu (2007)]. This is further
complicated in the case of networks with different node
dynamics.

Conventionally the first thing one does when analyzing
the dynamics of a system is to determine its stability.
Therefore, we start by analyzing the stability properties
of the nodes in isolation, then the effect of the structural
characteristics of its connections are determine. To this
end, we use a basic concept in nonlinear dynamical
systems, e.g., the energy of the nodes dynamics, then the
amount of feedback control necessary for the node to be
passive is determine. Then, the coupling is requiere to
preserve the overall dissipative nature of the nodes once
they are interconnected. Briefly, we look for a common

Lyapunov function V (x) for all nodes in the network,
which is constructed such that for each node one can
determine a passivity degree, that is, a scalar parameter
indicating the extent of the effort needed to stabilize the
node by feedback, which makes the derivation of V (x)
negative. Characterizing the nodes of the network is this
way we have the so-called V-stability description of the
network [Xiang and Chen (2007)]. Then, the effect of the
topology can be derived from the eigenspectrum of its
Laplacian matrix. In particular, for nonidentical nodes,
the V-stability characterization of the network has the
advantage that replaces the actual node dynamics by its
degree of passivity independently of the description of the
node’s dynamics, under mild conditions.

Despite the conservativeness associated with Lyapunov
stability analysis, using the V-stability characterization of
the network conditions for synchronization and stabiliza-
tion of a dynamical network can be derived. Furthermore,
for networks where the nodes have a common stationary
solution, the control objective can be achieved even when
only a small fraction of the nodes in the network are
controlled. That is, it can be controlled by pinning [Li
et al. (2004); Sorrentino et al. (2007); Sorrentino (2007);
Xiang et al. (2007)]. In this contribution we show that
using this approach a pinning strategy can stabilize a
network of non identical nodes, and even synchronize
them to a desired solution.

The remainder of this paper is organized as follows: In
Section 2, we define with detail the dynamical network
with different nodes that will be studied and its V-

Congreso Nacional de Control
Automático, AMCA 2015,

Cuernavaca, Morelos, México.

670

Reserva de Derechos No. EN TRÁMITE, ISSN. EN TRÁMITE



stability characterization. The stabilization problem un-
der pinning control is described in Section 3. While in
Section 4, the results are extended to the imposition of
a desired trajectory in the network. A numerical illustra-
tion of the approach proposed is presented in Section 5.
Finally, the contribution is concluded with final comments
in Section 6.

2. NETWORK DESCRIPTION

Consider a network of N dynamical systems, linearly and
diffusively coupled given by

ẋi = fi(xi) +

N
∑

j=1,j 6=i

cijaijΓ(xj − xi) +Biui

yi = Γxi

(1)

for i = 1, 2, ..., N , where xi ∈ Rn is the state variable,
yi ∈ Rn is the output, and ui ∈ Rm (m ≤ n) is the
control input to the i-th node, respectively. The input
matrix for the i-th node isBi ∈ Rn×m. The inner coupling
matrix Γ ∈ Rn×n describes which states of the i and
j-th nodes are coupled. fi(.) : Rn 7→ Rn is a locally
Lipschitz nonlinear vector field describing the dynamics
of the i-th node in isolation. A = {aij} ∈ RN×N and
C = {cij} ∈ RN×N describe the connection structure and
connection strength of the network (cij ≥ 0), respectively.
The connection is bidirectional, therefore aij = aji = 1 if
the i and j-th nodes are connected, otherwise aij = aji =
0 (i 6= j). Since the connection topology is diffusive the

row and column sums
∑N

j=1
cijaij =

∑N

j=1
cjiaji = 0 are

null. Therefore, the network (1) can be rewritten as:

ẋi = fi(xi) +
N
∑

j=1

cijaijΓxj +Biui, for i = 1, 2, ..., N

yi = Γxi

(2)

We assume the following about the dynamics of an each
isolated node without control (ui = 0):

Assumption 1: There is a common equilibrium state,
x̄ ∈ Rn, satisfying

fi(x̄) = 0, for i = 1, 2, ..., N (3)

Assumption 2: There is a continuously differentiable
Lyapunov function V (x) : D ⊆ Rn 7→ R+ satisfying

V (x̄) = 0 with D =
⋃N

i=1
Di, Di = {xi : ‖xi − x̄i‖ < α},

α > 0 and x̄ ∈ D. Such that for each node function fi(xi),
there is a scalar θi guaranteeing

∂V (xi)

∂xi

(fi(xi)− θiΓ(x̄− xi)) < 0 (4)

for all xi ∈ Di, xi 6= x̄, i = 1, 2, ..., N .
The value θi is called the passivity degree of node i.

In following section we use these assumptions to deter-
mine conditions to stabilize a network of different nodes.

3. STABILIZATION OF DYNAMICAL NETWORKS

Under Assumption 1, a stationary state for the entire
network is

x1 = x2 = ... = xN = x̄ (5)

To stabilize the network at X̄ = [x̄⊤, ..., x̄⊤]⊤ ∈ RnN , we
can use Assumption 2 to define a Lyapunov function for
the entire network

Vall(X) =

N
∑

i=1

V (xi) (6)

where X = [x⊤
1 , x

⊤
2 , ..., x

⊤
N ]⊤ ∈ RnN .

The time derivative of Vall(X) along the trajectories of
(2) is given by

V̇all(X) =
N
∑

i=1

∂V (xi)

∂xi

fi(xi)+

N
∑

i=1

∂V (xi)

∂xi

N
∑

j=1

cijaijΓxj

(7)

With out lost of generality, X̄ = 0. From Assumption 1
one has that Vall(X̄) = 0 and V̇all(X̄) = 0. Then, for
X 6= X̄ = 0, using (4) from Assumption 2, the following
inequality is found

V̇all(X) < −
N
∑

i=1

∂V (xi)

∂xi

θiΓxi+

N
∑

i=1

∂V (xi)

∂xi

N
∑

j=1

cijaijΓxj

(8)

That is, V̇all(X) < M(X) with

M(X) =
N
∑

i=1

∂V (xi)

∂xi



−θiΓxi +
N
∑

j=1

cijaijΓxj



 (9)

Then, the stability of the stationary solution of the
network (2) is asymptotically stable about its equilibrium
point if M(X) ≤ 0 for all x ∈ D, with D = D1 ×
D2 × ... × DN ⊆ RnN . Moreover, if the matrix is
positive definitive the network is locally exponentially
stable about its equilibrium point if, that is, M(X) ≤

−µ1‖X‖2, µ2‖X‖2 ≤ V̇ (x) ≤ µ3‖X‖2 for some constants
µ1, µ2, µ3 > 0 for all X ∈ D. The region of attraction is
given by

Ω = {X : V̇all(X) < r} (10)

with r = infX∈D V̇all(X). In the case of D = RnN , the
result becomes global Xiang and Chen (2007).

The result can be further simplify by restricting our
attention to the case where Assumption 2 is satisfied
for all nodes in the network by a common quadratic
monomial Lyapunov function

V (x) = x⊤Qx (11)

with Q ∈ Rn×n a symmetric and positive definite matrix.
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From Assumption 1 and network (2), we can write
Θ = diag(θ1, θ2, ..., θN ) ∈ RN×N and G = {gij} =
{(cijaij)} ∈ RN×N . Then, the time derivative of the Lya-
punov function (11) along the network dynamics results
in

M(X) =

N
∑

i=1

x⊤
i



−θiQΓxi +

N
∑

j=1

cijaijQΓxj





which can be rewritten using the Kronecker product as

M(X) = X⊤(−Θ+G)⊗QΓX

which is negative definitive if the following inequalities
hold [Xiang and Chen (2007)]:

QΓ + Γ⊤Q ≥ 0
−Θ+G ≤ 0

(12)

To control de dynamics of the network one can use the
pinning strategy [Li et al. (2004)], where only a small
fraction ρN of the nodes in the network are controlled
(ρ ≪ 1) [Su and Wang (2014)]. In the context of V-
stability characterization of the network the idea es to
let ui 6= 0 for a few nodes, then identify the effect of the
introduced controllers on the passivity of the network.
Explicitly, the controllers need to be chosen sufficiently
many and sufficiently strong as to make the entire network
asymptotically stable. That is, chose the controls such
that the restrictions of (12) are satisfied.

In what follows, we restrict our attention to linear feed-
back controllers of the form:

ui = −Kixi (13)

where Ki ∈ Rm×n is the control gain of node i-th, which
is to be designed.

There are two type of nodes in the network: uncontrolled
and controlled nodes. We assume that, as defined in
Assumption 2, the passivity degree of each uncontrolled
node is θi. For the nodes controlled by (13), in isolation
we have:

ẋi = fi(xi)−BiKixi (14)

The passivity degree for the controlled node is obtained
as in (4), to be:

∂V (xi)

∂xi

(fi(xi)−BiKixi + θiΓxi + κiΓxi) < 0 (15)

for all xi ∈ Di ⊆ D, xi 6= 0, where the constants
κi ≥ 0 represent the effect of the feedback controller on
the passivity of the node. A positive value of κ implies
that control energy is necessity of make the node passive,
while a negative κ implies that the node is already stable.

Assuming that Assumption 2 holds and the common
Vall(X) is a quadratic as in (11), then

V̇all(X) =

N
∑

i=1

∂V (xi)

∂xi

fi(xi)−BiKixi

N
∑

i=1

∂V (xi)

∂xi

N
∑

j=1

cijaijΓxj

V̇all(X) < −

N
∑

i=1

∂V (xi)

∂xi

θiΓxi +K

N
∑

i=1

∂V (xi)

∂xi

N
∑

j=1

cijaijΓxj

with the stability of the controlled network determine by
the matrix

C = −Θ+G−K (16)

where K ∈ RN×N is a diagonal matrix with ρN elements
κi, i = 1, 2, ..., l different from cero, and its remaining
(1 − ρ)N elements zeros.

To achieve the control objective by pining control, we
need to determine which and with how much control gain
to pin the nodes of the network, such that the matrix
C is negative definite. This is an optimization problem
subject to constrains in the number of nodes and the size
of the energy of the controller. However, in general, when
a sufficiently large number of nodes are controlled with
sufficiently large gains, the stabilization of the network is
achievable [Xiang and Chen (2007)].

In the following section, we consider that the objective is
to impose a reference trajectory to the network.

4. IMPOSING A REFERENCE ON DYNAMICAL
NETWORKS

Suppose that the objective is that the dynamical network
of nonidentical nodes (2) follows the reference dynamics:

ṡ = fr(s) (17)

where s ∈ Rn is the reference state, with fr(.) : R
n 7→ Rn

is a locally Lipschitz nonlinear vector field describing the
reference dynamics.

The dynamics of the error (ei = xi − s) between the
network (2) and the reference (17) is given by

ėi = f̂i(ei) +

N
∑

j=1

cijaijΓej, for i = 1, 2, ..., N (18)

where f̂i(ei) = fi(xi)− fr(s).

Now, letting Assumption 2 also be satisfied for the f̂i(ei)
we have that there exist a Lyapunov function such that

∂V (xi)

∂xi

(f̂i(ei)− θ̂iΓei) < 0 (19)

where the passivity degree of the error dynamics measures
of how far the variational dynamics of node i-th is from
being passive. Furthermore, since the stability of (18) is
very unlikely, we use a pinning control strategy to stabilize
the error dynamics to its zero fixed point. As before, we
apply to a small fraction of the nodes (ρN) the local linear
feedback controllers of the form:

vi = −K̂iei (20)
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The closed-loop error dynamics of (18) becomes

ėi = f̂i(ei)−Bivi +

N
∑

j=1

cijaijΓej , for i = 1, 2, ..., N (21)

with Bi the input matrix of each node. Then, using
an overall quadratic Lyapunov function Vall(X) in the
same way as before, the stability of the error dynamics is
guarantied if the matrix

C = −Θ̂ +G− K̂ (22)

is negative definite, with K̂ ∈ RN×N is a diagonal matrix
with ρN elements κ̂i, i = 1, 2, ..., l different from cero, and
its remaining (1− ρ)N elements zeros.

In the following section we use numerical simulations to
illustrate the results presented in this contribution.

5. NUMERICAL SIMULATIONS

Consider a network of nodes in the form of Lorenz (23),
Chen (24), and Chua’s circuit (25) equations

ẋ1 = aL(x2 − x1)
ẋ2 = cLx1 − x2 − x1x3

ẋ3 = x1x2 − bLx3

(23)

ẋ1 = aC(x2 − x1)
ẋ2 = (cC − aC)x1 + cCx2 − x1x3

ẋ3 = x1x2 − bCx3

(24)

[

ẋ1

ẋ2

ẋ3

]

=







A1[x1, x2, x3]
⊤ + b1, if x1 > 1

A2[x1, x2, x3]
⊤ + b2, if |x1| ≤ 1

A3[x1, x2, x3]
⊤ + b3, if x1 < −1

(25)

where A1 = A3 =

[

−α(1 +m0) α 0
1 −1 1
0 −β 0

]

,

A2 =

[

−α(1 +m1) α 0
1 −1 1
0 −β 0

]

,

b1 = [−α(m1 −m0), 0, 0]
⊤
, b2 = [0, 0, 0]

⊤
, and b3 =

[α(m1 −m0), 0, 0]
⊤
.

With the parameter sets aL = 10, bL = 8

3
, and cL = 28

for Lorenz; aC = 35, bC = 3, and cC = 28 for Chen; and
α = 9, β = 100

7
, m0 = − 5

7
, and m1 = − 8

7
. As such, all

systems are in their chaotic state.

A common Lyapunov function is given by:

V (x) = x⊤Qx

with Q = diag(1, 1, 1). Then, we investigate which are
adequate values for the passivity degree θi in each case.
For the Lorenz equation, we have:

∂V (xi)

∂xi

(fi(xi)− θiΓ(x̄− xi)) =

1

2
[x1, x2, x3](

[

aL(x2 − x1)
cLx1 − x2 − x1x3

x1x2 − bLx3

]

+ θΓ

[

x1

x2

x3

]

) < 0
(26)

Letting Γ = In be the identity matrix of dimension n and
for the parameters above, the inequality becomes:

38x1x2 − (10x2
1 − θx2

1 + x2
2 − θx2

2 +
8

3
x2
3 − θx2

3) < 0

For θ < −15.5, the inequality is satisfied on an basin of
attraction of size {x : x < r = 10}

For Chen, using the same V (x) and Γ, the inequality
becomes:

28x1x2 + 28x2
2 + θx2

2 − 35x2
1 + θx2

1 − 3x2
3 + θx2

3 < 0

For θ < −28, the inequality is satisfied on an basin of
attraction of size {x : x < r = 10}

The passivity degree for Chua’s circuit is found from the
inequality

1

2
[x1, x2, x3]

(

Aj

[

x1

x2

x3

]

+ bj + θi

[

x1

x2

x3

])

< 0

for j = 1, 2, 3. Then, for θ = 5 the inequality is satisfied.

Constructing a network form by Lorenz, Chen and Chua
nodes, with a structure given by the matrix G, a regular
fully conneted array. Then, G will be given by:

G =











−4 1 1 1 1
1 −4 1 1 1
1 1 −4 1 1
1 1 1 −4 1
1 1 1 1 −4











Adding a controller of the form (13) the stability of the
network is given by

−











−16 0 0 0 0
0 −28 0 0 0
0 0 −5 0 0
0 0 0 −28 0
0 0 0 0 −16











+











−4 1 1 1 1
1 −4 1 1 1
1 1 −4 1 1
1 1 1 −4 1
1 1 1 1 −4











−











k1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











Where k1 is designed such that we get all the eigenvalues
negative. The results are shown in Figure 1.

Next, we use the dynamics of the Chen’s equation as
reference, and design a controller to stabilize the error
dynamics of the network, as shown in Figure 2.

6. CONCLUSIONS

We use the V-stability characterization of a dynamical
network with different nodes to establish conditions for
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Fig. 1. Stabilization by pinning a node of the network
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Fig. 2. Imposing a reference trajectory to the network of
different nodes

pinning synchronization of the network. Further, we ex-
tend these results to the case of the tracking problem
for networks by using this approach to impose a refer-
ence dynamics on the network. The proposed approach is
based on the V-stability of the nodes of the network, the
advantage of this approach is that by replacing the exact
description of the node’s dynamics by their passivity
degree, the condition for stability is greatly simplified.
However, the have the shortcoming that the nodes in the
network must be made passive by linear feedback, this can
be seen as a significant restriction, yet in the case of many
benchmark chaotic systems this condition is satisfied. The
conservativeness of the results are a consequence of the
use of Lyapunov theory, however, they are very useful for
the selection problem in pinning control of networks, as
one can choose to focus the control action on the nodes
with largest passivity index. Currently we are working
on extensions of this approach for the case of networks
with external perturbations, these results will be reported
elsewhere.
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